• How `ice needles' weave patterns of ston

    From ScienceDaily@1:317/3 to All on Wed Oct 6 21:30:40 2021
    How `ice needles' weave patterns of stones in frozen landscapes

    Date:
    October 6, 2021
    Source:
    University of Washington
    Summary:
    Experiments and modeling work offers new insights into the striking
    patterns of repeating stones seen in frost-prone landscapes.



    FULL STORY ========================================================================== Nature is full of repeating patterns that are part of the beauty of
    our world.

    An international team, including a researcher from the University of Washington, used modern tools to explain repeating patterns of stones
    that form in cold landscapes.


    ==========================================================================
    The new study, published Oct. 5 in the Proceedings of the National
    Academy of Sciences, uses experimental tools to show how needles of ice
    growing randomly on frozen ground can gradually move rocks into regular, repeating patterns. The team, based mainly in China and Japan, uses a combination of novel experiments and computer modeling to describe these striking features with new theoretical insights.

    "The presence of these amazing patterns that develop without any
    intervention from humans is pretty striking in nature," said co-author
    Bernard Hallet, a UW professor emeritus of Earth and space sciences
    and member of the Quaternary Research Center. "It's like a Japanese
    garden, but where is the gardener?" Hallet specializes in studying
    the patterns that form in polar regions, high- mountain and other cold environments. One of the reasons for the patterns is needle ice. As the temperature drops, the moisture contained in the soil grows into spikes
    of ice crystals that protrude from the ground.

    "When you go out in the backyard after a freezing night and you feel a
    little crunch under the foot, you're probably walking on needle ice,"
    Hallet said.

    As needle ice forms it tends to push up soil particles and, if there
    are any, small stones. More needle ice can form on patches of bare
    soil compared to rock-covered areas, Hallet said. The ice needles
    will slightly displace any remaining stones in the barer region. Over
    years, the stones begin to cluster in groups, leaving the bare patches essentially stone-free.



    ========================================================================== "That kind of selective growth involves interesting feedbacks between
    the size of the stones, the moisture in the soil and the growth of the
    ice needles," Hallet said.

    Hallet had previously reviewed another scientific paper by first author
    Anyuan Li, formerly at Shaoxing University and now at the University
    of Tsukuba in Japan. The two began a collaboration that mixes Hallet's
    longtime expertise investigating patterns in nature with Li and his collaborators' background in experimental science and computer modeling.

    Senior author Quan-Xing Liu at East China Normal University uses fieldwork
    and lab experiments to understand self-organized patterns in nature. For
    this study, the experimental setup was a flat square of wet soil a little
    over 1 foot on each side (0.4 meters) that began with stones spaced
    uniformly on the surface. The researchers ran the experiment through
    30 freeze-thaw cycles. By the end of that time, regular patterns had
    started to appear.

    "The videos are pretty striking, and they show that the ice just comes up
    and in a single cycle it pushes up stones and moves them slightly to the
    side," Hallet said. "Because of those experiments and the abilities of the individuals involved to analyze those results, we have much more tangible, quantitative descriptions of these features." Further experiments looked
    at how the pattern changed depending on the concentration of stones,
    the slope of the ground, and the height of the ice needles, which is
    also affected by the stone concentration. Based on those results, the
    authors wrote a computer model that predicts what patterns will appear depending on the concentration of stones on the frost-prone surface.

    Other co-authors on the new study are Norikazu Matsuoka at the University
    of Tsukuba; Fujun Niu at the South China University of Technology; Jing
    Chen and Wensi Hu at East China Normal University; Desheng Li at Shanghai
    Jiao Tong University in China; Johan van de Koppel at the University of Groningen in The Netherlands; and Nigel Goldenfeld at the University of California, San Diego.

    The research was funded by the Second Tibetan Plateau Scientific
    Expedition and Research program; the Japan Society for the Promotion of Science; the National Natural Science Foundation of China; the Chinese
    Academy of Sciences; and the China Scholarship Council.

    ========================================================================== Story Source: Materials provided by University_of_Washington. Original
    written by Hannah Hickey. Note: Content may be edited for style and
    length.


    ========================================================================== Related Multimedia:
    * Circles_and_lines_of_stones_in_frost-prone_landscapes.

    ========================================================================== Journal Reference:
    1. Anyuan Li, Norikazu Matsuoka, Fujun Niu, Jing Chen, Zhenpeng
    Ge, Wensi
    Hu, Desheng Li, Bernard Hallet, Johan van de Koppel, Nigel
    Goldenfeld, Quan-Xing Liu. Ice needles weave patterns of stones
    in freezing landscapes. Proceedings of the National Academy of
    Sciences, 2021; 118 (40): e2110670118 DOI: 10.1073/pnas.2110670118 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/10/211006134925.htm

    --- up 4 weeks, 6 days, 8 hours, 25 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)