• Sandwich-style construction: Toward ultr

    From ScienceDaily@1:317/3 to All on Mon Oct 4 21:30:40 2021
    Sandwich-style construction: Toward ultra-low-energy exciton electronics
    Dissipationless flow of exciton polaritons at room temperature

    Date:
    October 4, 2021
    Source:
    ARC Centre of Excellence in Future Low-Energy Electronics
    Technologies
    Summary:
    A new 'sandwich-style' fabrication process placing a semiconductor
    only one atom thin between two mirrors has allowed Australian
    researchers to make a significant step towards ultra-low
    energy electronics based on the light-matter hybrid particles
    exciton-polaritons. The breakthrough evidence of robust,
    dissipationless propagation of exciton-polaritons, coupled excitons
    in atomically-thin material to light, demonstrating for the first
    time long-range propagation without lost dissipation of energy,
    at room temperature.



    FULL STORY ==========================================================================
    A new 'sandwich-style' fabrication process placing a semiconductor only
    one atom thin between two mirrors has allowed Australian researchers to
    make a significant step towards ultra-low energy electronics based on
    the light-matter hybrid particles exciton-polaritons.


    ==========================================================================
    The breakthrough, led by the Australian National University, demonstrated robust, dissipationless propagation of an exciton mixed with light
    bouncing between the high-quality mirrors.

    Conventional electronics relies on flowing electrons, or 'holes' (a hole
    is the absence of an electron, ie a positively-charged quasiparticle).

    However, a major field of future electronics focusses instead on use of excitons (an electron bound to a hole) because, in principle, they could
    flow in a semiconductor without losing energy by forming a collective superfluid state. And excitons in novel, actively studied atomically-thin semiconductors are stable at room temperature.

    Atomically-thin semiconductors are thus a promising class of materials for
    low- energy applications such as novel transistors and sensors. However, precisely because they are so thin, their properties, including the
    flow of excitons, are strongly affected by disorder or imperfections,
    which can be introduced during fabrication.

    The ANU-led FLEET team -- with colleagues at Swinburne University and
    FLEET Partner institution Wroclaw University -- has coupled the excitons
    in an atomically-thin material to light to demonstrate for the first
    time their long- range propagation without any dissipation of energy,
    at room temperature.



    ==========================================================================
    When an exciton (matter) binds with a photon (light), it forms a new
    hybrid particle -- an exciton-polariton. Trapping light between two
    parallel high- quality mirrors in an optical microcavity allows this
    to happen.

    In the new study, a new 'sandwich-style' fabrication process for the
    optical microcavity allowed the researchers to minimise damage to the atomically-thin semiconductor and to maximise the interaction between
    the excitons and the photons. The exciton-polaritons formed in this
    structure were able to propagate without energy dissipation across tens
    of micrometres, the typical scale of an electronic microchip.

    MICROCAVITY CONSTRUCTION IS THE KEY A high-quality optical microcavity
    that ensures the longevity of light (photonic) component of
    exciton-polaritons is the key to these observations.

    The study found that exciton-polaritons can be made remarkably stable if
    the microcavity is constructed in a particular way, avoiding damage of the fragile semiconductor sandwiched between the mirrors during fabrication.



    ==========================================================================
    "The choice of the atomically-thin material in which the excitons travel
    is far less important," says lead and corresponding author Matthias
    Wurdack.

    "We found that construction of that microcavity was the key," says
    Matthias, "And while we used tungsten sulfide (WS2) in this particular experiment, we believe any other atomically-thin TMDC material would
    also work." (Transition metal dichalcogenides are excellent hosts
    for excitons, hosting excitons that are stable at room temperature and
    interact strongly with light).

    The team built the microcavity by stacking all its components one by one.

    First, a bottom mirror of the microcavity is fabricated, then a
    semiconductor layer is placed onto it, and then the microcavity is
    completed by placing another mirror on top. Critically, the team did
    not deposit the upper mirror structure directly onto the notoriously
    fragile atomically-thin semiconductor, which is easily damaged during
    any material deposition process.

    "Instead, we fabricate the entire top structure separately, and then place
    it on top of the semiconductor mechanically, like making a sandwich,"
    says Matthias.

    "Thus we avoid any damage to the atomically-thin semiconductor, and
    preserve the properties of its excitons." Importantly, the researchers optimised this sandwiching method to make the cavity very short, which maximized the exciton-photon interaction.

    "We also benefitted from a bit of serendipity," say Matthias. "An accident
    of fabrication that ended up being key to our success!" The serendipitous 'accident' came in the form of an air gap between the two mirrors,
    making them not strictly parallel.

    This wedge in the microcavity creates a voltage/potential 'slope' for
    the exciton-polaritons, with the particles moving either up or down
    the incline.

    The researchers discovered that a proportion of exciton-polaritons
    travel with conservation of total (potential and kinetic) energy, both
    up and down the incline. Travelling down the slope, they convert their potential energy into equal amount of kinetic energy, and vice versa.

    That perfect conservation of total energy means no energy is being lost
    in heat (due to 'friction'), which signals 'ballistic' or dissipationless transport for polaritons. Even though the polaritons in this study do
    not form a superfluid, the absence of dissipation is achieved because
    all scattering processes that lead to energy loss are suppressed.

    "This demonstration, for the first time, of ballistic transport of room- temperature polaritons in atomically-thin TMDCs is a significant step
    towards future, ultra-low energy exciton-based electronics," says group
    leader Prof Elena Ostrovskaya (ANU).

    Apart from creating the potential "slope," that same fabrication
    accident created a potential well for exciton-polaritons. This enabled
    the researchers to catch and accumulate the travelling exciton-polaritons
    in the well -- an essential first step for trapping and guiding them on
    a microchip." LONG-RANGE, ROOM-TEMPERATURE FLOW OF EXCITON-POLARITONS Furthermore, the researchers confirmed that exciton-polaritons can
    propagate in the atomically-thin semiconductor for tens of micrometres
    (easily far enough for functional electronics), without scattering on
    material defects. This is in contrast to excitons in these materials,
    the travel length of which is dramatically reduced by these defects.

    Moreover, the exciton-polaritons were able to preserve their intrinsic coherence (correlation between signal at different points in space and
    time), which bodes well for their potential as information carriers.

    "This long-range, coherent transport was achieved at room temperature,
    which is important for development of practical applications of
    atomically-thin semiconductors" said Matthias Wurdack.

    If future excitonic devices are to be a viable, low-energy alternative
    to conventional electronic devices, they must be able to operate at room temperature, without the need for energy-intensive cooling.

    "In fact, counterintuitively, our calculations show that the propagation
    length is getting longer at higher temperatures, which is important for technological applications," said Matthias.

    THE STUDY Motional narrowing, ballistic transport, and trapping
    of room-temperature exciton polaritons in an atomically-thin
    semiconductor was published in Nature Communications in September
    2021 (DOI: 10.1038/s41467-021-25656-7) As well as funding from the
    Australian Research Council (Centre of Excellence program) the authors
    also acknowledge the technical support for sample fabrication from the Australian National Fabrication Facility (ANFF) ACT node, support by the Foundation for Polish Science (FNP) START program, and European Research Council (ERC) UnLimit2D project.

    SEEKING A SUSTAINABLE FUTURE FOR ELECTRONICS/COMPUTING The dissipationless transport of exciton-polaritons is one candidate physical phenomena in realising a low-energy exciton transistor.

    Prof Ostrovskaya leads FLEET's research theme 2, which seeks to create
    exciton- polariton condensates (collective states that can display superfluidity) in atomically-thin semiconductors to achieve electrical
    current flow with minimal wasted dissipation of energy in a proposed new generation of near-zero resistance, ultra-low energy electronic devices,
    sought by FLEET.

    ========================================================================== Story Source: Materials provided by ARC_Centre_of_Excellence_in_Future_Low-Energy_Electronics
    Technologies. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. M. Wurdack, E. Estrecho, S. Todd, T. Yun, M. Pieczarka, S. K. Earl,
    J. A.

    Davis, C. Schneider, A. G. Truscott, E. A. Ostrovskaya. Motional
    narrowing, ballistic transport, and trapping of room-temperature
    exciton polaritons in an atomically-thin semiconductor. Nature
    Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-25656-7 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/10/211004104240.htm

    --- up 4 weeks, 4 days, 8 hours, 25 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)