• New CRISPR/Cas9 technique corrects cysti

    From ScienceDaily@1:317/3 to All on Mon Aug 9 21:30:48 2021
    New CRISPR/Cas9 technique corrects cystic fibrosis in cultured human
    stem cells

    Date:
    August 9, 2021
    Source:
    Hubrecht Institute
    Summary:
    Researchers corrected mutations that cause cystic fibrosis in
    cultured human stem cells. They used a technique called prime
    editing to replace the 'faulty' piece of DNA with a healthy
    piece. The study shows that prime editing is safer than the
    conventional CRISPR/Cas9 technique.



    FULL STORY ========================================================================== Researchers from the group of Hans Clevers (Hubrecht Institute) corrected mutations that cause cystic fibrosis in cultured human stem cells. In collaboration with the UMC Utrecht and Oncode Institute, they used a
    technique called prime editing to replace the 'faulty' piece of DNA with
    a healthy piece.

    The study, published in Life Science Alliance on August 9th, shows that
    prime editing is safer than the conventional CRISPR/Cas9 technique. "We
    have for the first time demonstrated that this technique really works
    and can be safely applied in human stem cells to correct cystic fibrosis."

    ========================================================================== Cystic fibrosis (CF) is one of the most prevalent genetic diseases
    worldwide and has grave consequences for the patient. The mucus in the
    lungs, throat and intestines is sticky and thick, which causes blockages
    in organs. Although treatments are available to dilute the mucus and
    prevent inflammations, CF is not yet curable. However, a new study from
    the group of Hans Clevers (Hubrecht Institute) in collaboration with
    the UMC Utrecht and Oncode Institute offers new hope.

    Correcting CF mutations The researchers succeeded in correcting the
    mutations that cause CF in human intestinal organoids. These organoids,
    also called mini-organs, are tiny 3D structures that mimic the intestinal function of patients with CF. They were previously developed by the
    same research group from stem cells of patients with CF and stored in a
    biobank in Utrecht. For the study, published in Life Science Alliance,
    a technique named prime editing was used to replace the piece of mutated
    DNA that causes CF with a healthy piece of DNA in these organoids.

    Safer than CRISPR/Cas9 Prime editing is a newer version of the
    better-known gene editing technique CRISPR/Cas9. CRISPR/Cas9 cuts the DNA before correcting it. Although this corrects the mutated piece of DNA,
    it also causes damage in other regions in the genome. "In our study,
    prime editing proves to be a safer technique than the conventional
    CRISPR/Cas9. It can build in a new piece of DNA without causing damage elsewhere in the DNA. That makes the technique promising for application
    in patients," says Maarten Geurts, first author on the publication.

    Swelling The mutations that cause CF are localized in the CFTR channel,
    which is present in the cells of various organs including the lungs. Due
    to the mutations, the channel does not function properly, leaving the
    layer of mucus that covers the cells with too little water: the mucus
    becomes sticky. The addition of a substance called forskolin causes
    healthy organoids to swell, but this does not happen in organoids with mutations in the CFTR channel. "We applied prime editing to the mutations, after which the treated organoids demonstrated the same response as the
    healthy organoids: they became swollen. That provided us with proof that
    our technique worked and replaced the mutated DNA," Geurts explains.

    Curing genetic diseases Now that the researchers showed that the mutations
    that cause CF can be safely corrected, applications in the clinic come
    one step closer. "New variants of CRISPR/Cas9, such as prime editing,
    can safely correct mutations without causing damage in other regions of
    the DNA. This will hopefully enable us to cure or even prevent genetic
    diseases in the future." But before that, some challenges still lie ahead
    for the researchers. The technique for example still needs to be adapted
    for safe use in humans. "But this is a great step towards successfully
    applying prime editing in the clinic," Geurts concludes.

    Hans Clevers is group leader at the Hubrecht Institute for Developmental Biology and Stem Cell Research and at the Princess Ma'xima Center for
    Pediatric Oncology. He is also University Professor at the Utrecht
    University and Oncode Investigator.

    ========================================================================== Story Source: Materials provided by Hubrecht_Institute. Note: Content
    may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Maarten H Geurts, Eyleen de Poel, Cayetano Pleguezuelos-Manzano,
    Rurika
    Oka, Le'o Carrillo, Amanda Andersson-Rolf, Matteo Boretto,
    Jesse E Brunsveld, Ruben van Boxtel, Jeffrey M Beekman, Hans
    Clevers. Evaluating CRISPR-based prime editing for cancer modeling
    and CFTR repair in organoids. Life Science Alliance, 2021; 4 (10):
    e202000940 DOI: 10.26508/ lsa.202000940 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/08/210809105908.htm

    --- up 13 weeks, 3 days, 22 hours, 45 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)