• Lunar samples solve mystery of the moon'

    From ScienceDaily@1:317/3 to All on Thu Aug 5 21:30:42 2021
    Lunar samples solve mystery of the moon's supposed magnetic shield
    Research may help inform a new wave of lunar experiments based on data
    that will be gathered by the Artemis mission

    Date:
    August 5, 2021
    Source:
    University of Rochester
    Summary:
    Tests of glass samples gathered on Apollo missions show
    magnetization may result from impacts of objects like meteors, not
    as a result of magnetization from the presence of a magnetic shield.



    FULL STORY ==========================================================================
    In 2024, a new age of space exploration will begin when NASA sends
    astronauts to the moon as part of their Artemis mission, a follow-up to
    the Apollo missions of the 1960s and 1970s.


    ==========================================================================
    Some of the biggest questions that scientists hope to explore include determining what resources are found in the moon's soil and how those
    resources might be used to sustain life.

    In a paper published in the journal Science Advances, researchers at the University of Rochester, leading a team of colleagues at seven other institutions, report their findings on a major factor that influences
    the types of resources that may be found on the moon: whether or not
    the moon has had a long-lived magnetic shield at any point in its 4.53 billion-year history.

    The presence or absence of a shield matters because magnetic shields
    protect astronomical bodies from harmful solar radiation. And the team's findings contradict some longstanding assumptions.

    "This is a new paradigm for the lunar magnetic field," says first author
    John Tarduno, the William R. Kenan, Jr., Professor of Geophysics in the Department of Earth and Environmental Sciences and dean of research for
    Arts, Sciences & Engineering at Rochester.

    Did the Moon Ever Have a Magnetic Field? For years, Tarduno has been
    a leader in the field of paleomagnetism, studying the development of
    Earth's magnetic shield as a means to understanding planetary evolution
    and environmental change.



    ========================================================================== Earth's magnetic shield originates deep within the planet's core. There, swirling liquid iron generates electric currents, driving a phenomenon
    called the geodynamo, which produces the shield. The magnetic shield
    is invisible, but researchers have long recognized that it is vital for
    life on Earth's surface because it protects our planet from solar wind -- streams of radiation from the sun.

    But has Earth's moon ever had a magnetic shield? While the moon has no magnetic shield now, there has been debate over whether or not the moon
    may have had a prolonged magnetic shield at some point in its history.

    "Since the Apollo missions, there has been this idea that the moon had a magnetic field that was as strong or even stronger than Earth's magnetic
    field at around 3.7 billion years ago," Tarduno says.

    The belief that the moon had a magnetic shield was based on an initial
    dataset from the 1970s that included analyses of samples collected
    during the Apollo missions. The analyses showed that the samples had magnetization, which researchers believed was caused by the presence of
    a geodynamo.



    ==========================================================================
    But a couple of factors have since given researchers pause.

    "The core of the moon is really small and it would be hard to actually
    drive that kind of magnetic field," Tarduno explains. "Plus, the previous measurements that record a high magnetic field were not conducted using
    heating experiments. They used other techniques that may not accurately
    record the magnetic field." When Lunar Samples Meet Lasers Tarduno and
    his colleagues tested glass samples gathered on previous Apollo missions,
    but used CO2 lasers to heat the lunar samples for a short amount of time,
    a method that allowed them to avoid altering the samples. They then
    used highly sensitive superconducting magnetometers to more accurately
    measure the samples' magnetic signals.

    "One of the issues with lunar samples has been that the magnetic carriers
    in them are quite susceptible to alteration," Tarduno says. "By heating
    with a laser, there is no evidence of alteration in our measurements,
    so we can avoid the problems people may have had in the past."
    The researchers determined that the magnetization in the samples could
    be the result of impacts from objects such as meteorites or comets -- not
    the result of magnetization from the presence of a magnetic shield. Other samples they analyzed had the potential to show strong magnetization in
    the presence of a magnetic field, but didn't show any magnetization,
    further indicating that the moon has never had a prolonged magnetic
    shield.

    "If there had been a magnetic field on the moon, the samples we
    studied should all have acquired magnetization, but they haven't,"
    Tarduno says. "That's pretty conclusive that the moon didn't have a long-lasting dynamo field." Lack of Magnetic Shield Means an Abundance
    of Elements Without the protection of a magnetic shield, the moon was susceptible to solar wind, which may have caused a variety of volatiles
    -- chemical elements and compounds that can be easily evaporated -- to
    become implanted in the lunar soil. These volatiles may include carbon, hydrogen, water, and helium 3, an isotope of helium that is not present
    in abundance on Earth.

    "Our data indicates we should be looking at the high end of estimates of
    helium 3 because a lack of magnetic shield means more solar wind reaches
    the lunar surface, resulting in much deeper reservoirs of helium 3 than
    people thought previously," Tarduno says.

    The research may help inform a new wave of lunar experiments based on
    data that will be gathered by the Artemis mission. Data from samples
    gathered during the mission will allow scientists and engineers to study
    the presence of volatiles and better determine if these materials can
    be extracted for human use. Helium 3, for instance, is currently used
    in medical imaging and cryogenics and is a possible future fuel source.

    A lack of magnetic shielding also means that ancient lunar soils may hold records of past solar wind emissions. Analyzing cores of soil samples
    could therefore provide scientists with a better understanding of the
    evolution of the sun.

    "With the background provided by our research, scientists can
    more properly think about the next set of lunar experiments
    to perform," Tarduno says. "These experiments may focus on
    current lunar resources and how we could use them and also
    on the historical record of what is trapped in the lunar soil." ========================================================================== Story Source: Materials provided by University_of_Rochester. Original
    written by Lindsey Valich. Note: Content may be edited for style and
    length.


    ========================================================================== Journal Reference:
    1. John A. Tarduno, Rory D. Cottrell, Kristin Lawrence, Richard
    K. Bono,
    Wentao Huang, Catherine L. Johnson, Eric G. Blackman, Aleksey
    V. Smirnov, Miki Nakajima, Clive R. Neal, Tinghong Zhou, Mauricio
    Ibanez-Mejia, Hirokuni Oda, Ben Crummins. Absence of a long-lived
    lunar paleomagnetosphere. Science Advances, 2021; 7 (32): eabi7647
    DOI: 10.1126/sciadv.abi7647 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/08/210805141144.htm

    --- up 12 weeks, 6 days, 22 hours, 45 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)