• Built-in vibration control may help soun

    From ScienceDaily@1:317/3 to All on Wed Aug 4 21:30:38 2021
    Built-in vibration control may help soundproof spaces
    Lab experiments show built-in resonators reduced vibration spread

    Date:
    August 4, 2021
    Source:
    Ohio State University
    Summary:
    A different kind of design for absorbing vibrations could help
    better soundproof walls and make vehicles more streamlined, a new
    study shows.



    FULL STORY ==========================================================================
    A different kind of design for absorbing vibrations could help better soundproof walls and make vehicles more streamlined, a new study shows.


    ==========================================================================
    The study tested how well built-in resonators handled vibrations under a variety of scenarios. Resonators are devices that help manage vibrations -
    - some vehicles have them to limit the sound emitted from a car's muffler,
    and some bridges and buildings use them to limit noise and movement from
    those structures. Resonators use spring-like oscillation to control and
    change vibrations -- some absorb and neutralize them, others amplify
    and direct them to specific places. (The chamber inside an acoustic
    guitar is a resonator, for example.) Prior studies have examined how
    to use resonators to control sound that is passed through walls or to
    reduce the vibrations of moving vehicles. Those studies have focused on
    adding a resonator to an existing structure or vehicle part. But this
    study found that cutting resonators directly into the wall or vehicle
    material suppressed the vibrations that could spread.

    "We wanted to create and test a design that would reduce vibration," said
    Ryan Harne, senior author of the paper and former associate professor
    of mechanical engineering at The Ohio State University. "Vibration is
    integral to a lot of problems in engineering, both in how we construct buildings and in how we make better airplanes and other vehicles." Harne,
    who maintains an adjunct position at Ohio State, has since joined the
    faculty at Penn State University. The experiments for this study were
    conducted in his former lab at Ohio State. That lab contains equipment
    that lets researchers control the force and frequency of vibrations
    during scientific experiments.

    For this study, Harne and former Ohio State doctoral student Sih-Ling
    Yeh, lead author of the study, cut resonators into rectangular acrylic
    plates. Their study, published in the October 2021 volume of the journal Thin-Walled Structures, was the first to consider what might happen if resonators were cut directly into a material, rather than added on later.



    ==========================================================================
    The study did not directly compare cut-in resonators to those that are
    added on. Harne said that cut-in resonators are more streamlined than
    those that are added on and would be better options for applications where space matters - in the construction of an airplane or a wall, for example.

    The researchers held the plates in place using different mechanisms --
    some were clamped tightly, some were suspended in air, and some were
    held up by supports. Then they used a mechanized hammer to strike the
    plates and measured the force of the vibrations created by each plate
    after the hammer's impact.

    They kept one plate unaltered as a control.

    They found that vibrations traveled farther on the unaltered plates than
    on those with built-in resonators. The resonators, their experiments
    showed, helped the plates flex and absorb the vibrations from the hammer.

    The experiments were built to test a design that could have multiple
    real-world applications and be used to soundproof walls, but also could
    be used to build airplane frames that automatically lessen the sound
    that enters the cabin.

    "You can imagine a sandwich-like construction, where you put a lightweight panel with a built-in resonator between two panels of sheetrock, or layer
    it inside the walls of an airplane," Harne said. "And you could use this
    to reduce vibration of the whole system without reducing the aerodynamics
    or efficiency since mass is eliminated. It controls that vibration, and vibration affects what we hear, and it affects how streamlined an airplane
    or an automobile is." The resonators also were able to absorb vibrations regardless of how the plates were held in place, something that surprised Harne, who has been studying vibrations and frequencies for years.

    "I was also surprised at how effective this was because we aren't adding
    mass to the plates -- usually, resonators are added after the fact,"
    Harne said.

    "But here, we showed that by building them in, you can achieve even
    better vibration control." This work was supported by the National
    Science Foundation.

    ========================================================================== Story Source: Materials provided by Ohio_State_University. Original
    written by Laura Arenschield. Note: Content may be edited for style
    and length.


    ========================================================================== Journal Reference:
    1. Sih-Ling Yeh, Ryan L. Harne. Cut-out resonators for tuned vibration
    suppression of plates. Thin-Walled Structures, 2021; 167: 108200
    DOI: 10.1016/j.tws.2021.108200 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/08/210804123541.htm

    --- up 12 weeks, 5 days, 22 hours, 45 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)