• Changing ocean currents are driving extr

    From ScienceDaily@1:317/3 to All on Wed Oct 20 21:30:34 2021
    Changing ocean currents are driving extreme winter weather

    Date:
    October 20, 2021
    Source:
    University of Arizona
    Summary:
    Slower ocean circulation as the result of climate change could
    intensify extreme cold weather in the U.S., according to new
    research.



    FULL STORY ========================================================================== Throughout Earth's oceans runs a conveyor belt of water. Its churning
    is powered by differences in the water's temperature and saltiness,
    and weather patterns around the world are regulated by its activity.


    ==========================================================================
    A pair of researchers studied the Atlantic portion of this worldwide
    conveyor belt called the Atlantic Meridional Overturning Circulation,
    or AMOC, and found that winter weather in the United States critically
    depends on this conveyor belt-like system. As the AMOC slows because of
    climate change, the U.S. will experience more extreme cold winter weather.

    The study, published in the journal Communications Earth & Environment was
    led by Jianjun Yin, an associate professor in the University of Arizona Department of Geosciences and co-authored by Ming Zhao, a physical
    scientist at the National Oceanic and Atmospheric Administration's
    Geophysical Fluid Dynamics Laboratory.

    AMOC works like this: Warm water travels north in the upper Atlantic
    Ocean and releases heat into the atmosphere at high latitudes. As the
    water cools, it becomes denser, which causes it to sink into the deep
    ocean where it flows back south.

    "This circulation transports an enormous amount of heat northward in the ocean," Yin said. "The magnitude is on the order of 1 petawatts, or 10
    to the 15 power watts. Right now, the energy consumption by the entire
    world is about 20 terawatts, or 10 to the 12 power watts. So, 1 petawatt
    is enough to run about 50 civilizations." But as the climate warms,
    so does the ocean surface. At the same time, the Greenland ice sheet experiences melting, which dumps more freshwater into the ocean. Both
    warming and freshening of the water can reduce surface water density and inhibit the sinking of the water, slowing the AMOC. If the AMOC slows,
    so does the northward heat transport.



    ==========================================================================
    This is important because the equator receives more energy from the sun
    than the poles. Both the atmosphere and ocean work to transport energy
    from low latitudes to high latitudes. If the ocean can't transport as
    much heat northward, then the atmosphere must instead transport more
    heat through more extreme weather processes at mid-latitudes. When the atmosphere moves heat northward, cold air is displaced from the poles
    and pushed to lower latitudes, reaching places as far south as the
    U.S. southern border.

    "Think of it as two highways connecting two big cities," Yin said. "If
    one is shut down, the other one gets more traffic. In the atmosphere,
    the traffic is the daily weather. So, if the ocean heat transport slows
    or shuts down, the weather becomes more extreme." Yin said the study
    was motivated by the extreme cold weather Texas experienced in February.

    "In Houston, the daily temperature dropped to 40 degrees Fahrenheit
    below the normal," Yin said. "That's the typical range of a summer/winter temperature difference. It made Texas feel like the Arctic. This kind of extreme winter weather happened several times in the U.S. during recent
    years, so the scientific community has been working to understand the
    mechanism behind these extreme events." The crisis in Texas caused
    widespread and catastrophic power outages, and the National Oceanic and Atmospheric Administration estimated that socioeconomic damages totaled
    $20 billion. Yin was curious about the role the ocean played in the
    extreme weather event.



    ==========================================================================
    Yin and Zhao used a state-of-the-art, high-resolution global climate
    model to measure the influence of the AMOC on U.S. extreme cold weather.

    They ran the model twice, first looking at today's climate with a
    functioning AMOC. They then adjusted the model by inputting enough
    freshwater into the high-latitude North Atlantic to shut down the
    AMOC. The difference revealed the role of the AMOC in extreme cold
    weather. They found that without the AMOC and its northward heat
    transport, extremely cold winter weather intensifies in the U.S.

    According to recent observational studies, the AMOC has weakened in past decades. Climate models project it will get even weaker in response to increased greenhouse gases in the atmosphere.

    "But there is uncertainty about the magnitude of the weakening because,
    at this point, we don't know exactly how much the Greenland ice sheet
    will melt," Yin said. "How much it melts depends on the greenhouse
    gas emissions." The researchers also didn't take into account in their
    model the effects of human-caused global warming, but that's an area of interest for the future, Yin said.

    "We basically just turn off the AMOC (in the model) to look at
    the response by extreme weather," he said. "Next, we want to
    factor in the greenhouse gases and look at the combined effects
    of the AMOC slowdown and global warming on extreme cold weather." ========================================================================== Story Source: Materials provided by University_of_Arizona. Original
    written by Mikayla Mace Kelley. Note: Content may be edited for style
    and length.


    ========================================================================== Journal Reference:
    1. Jianjun Yin, Ming Zhao. Influence of the Atlantic meridional
    overturning
    circulation on the U.S. extreme cold weather. Communications Earth &
    Environment, 2021; 2 (1) DOI: 10.1038/s43247-021-00290-9 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/10/211020140042.htm

    --- up 6 weeks, 6 days, 8 hours, 25 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)