• Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome (1/

    From =?UTF-8?B?4oqZ77y/4oqZ?=@21:1/5 to All on Fri Feb 10 20:38:51 2017
    http://atm.amegroups.com/article/view/13313/html

    Have a website account?Log In orRegister for exclusive website content.S
    Home / Vol 5, No 2 (January 2017) / Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome
    Review Article


    Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome

    Hans C. Arora1, Charis Eng2, Daniel A. Shoskes1
    1Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA; 2Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
    Contributions: (I) Conception and design: All authors; (II) Administrative support: C Eng, DA Shoskes; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: HC Arora; (V) Data analysis and interpretation: All
    authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

    Correspondence to: Daniel A. Shoskes, MD. Cleveland Clinic, 9500 Euclid Avenue, Q10-1, Cleveland, OH 44195, USA. Email: dshoskes@gmail.com.
    Abstract: Analysis of the human microbiome continues to reveal new and previously unrealized associations between microbial dysbiosis and disease. Novel approaches to bacterial identification using culture-independent methods allow practitioners to
    discern the presence of alterations in the taxa and diversity of the microbiome and identify correlations with disease processes. While some of these diseases that have been extensively studied are well-defined in their etiology and treatment methods (
    colorectal cancer), others have provided much more significant challenges in both diagnosis and treatment. One such condition, chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), has several etiological and potentiating contributions from
    infection, inflammation, central nervous system (CNS) changes, stress, and central sensitization—all factors that play important roles in the crosstalk between the human body and its microbiome. No singular cause of CP/CPPS has been identified and it
    is most likely a syndrome with multifactorial causes. This heterogeneity and ambiguity are sources of significant frustration for patients and providers alike. Despite multiple attempts, treatment of chronic prostatitis with monotherapy has seen limited
    success, which is thought to be due to its heterogeneous nature. Phenotypic approaches to both classify the disease and direct treatment for CP/CPPS have proven beneficial in these patients, but questions still remain regarding etiology. Newer microbiome
    research has found correlations between symptom scores and disease severity and the degree of dysbiosis in urine and gut (stool) microbiomes in these patients as compared to un-afflicted controls. These findings present potential new diagnostic and
    therapeutic targets in CP/CPPS patients.

    Keywords: Microbiota; prostatitis; chronic pain; pelvic pain

    Submitted Aug 18, 2016. Accepted for publication Sep 12, 2016.

    doi: 10.21037/atm.2016.12.32

    Increasing interest has been directed towards the study of the human microbiome, defined as the ecological community of commensal, symbiotic, and pathogenic microorganisms and their genetic content inhabiting the human body (1). While our own human
    genome contains approximately 20,000 protein-encoding genes, it has been estimated that the sheer number of microbiota living on and inside of us is at least 10 times the number of somatic and germ cells in our bodies (2). As we are beginning to
    understand the role of the microbiome in healthy humans, it is becoming increasingly clear that there exists interplay and symbiotic relationships between our bodies and these microorganisms, the most abundant of which can be found in the gut. Deviations
    from the “normal” human gut microbiome have been discovered in a variety of diseases and conditions, including inflammatory bowel disease, colorectal cancer, obesity/metabolic syndrome, type 2 diabetes mellitus, breast cancer, autoimmune disease,
    autism spectrum disorder, post-traumatic stress disorder and responsiveness to visceral pain (3-10). Studies in small mammals are revealing even more relationships between the gut microbiome and the central nervous system (CNS) than previously thought,
    suggesting the existence of a “gut-brain axis” whereby the gut microbiome modulates the CNS and/or vice versa (11-14). Still, these differences are only correlative, and to date causative mechanistic relationships between alterations in the
    microbiome, also known a microbial dysbiosis, and human pathology have yet to be discovered.

    Many of the human tissues or bodily fluids studied had previously been considered sterile per conventional culture methods. With the advent of polymerase chain reaction (PCR) technology, it is possible to selectively amplify the 16S ribosomal RNA found
    only in bacteria allowing identification of differences in all of the genera and species present in a specimen without the need for culture-selective media and microbial replication. These differences may be reflected at the ecological level (alpha
    diversity) and at the individual genus and species level.

    The microbiome is not static, but responds and evolves in response to environmental factors. As may be expected, the gut microbiome is molded by oral intake of both food and medications. Variation in diet between cultures and dietary lifestyles lead to
    rapid and reproducible changes in the human gut microbiome (15). Similarly, antibiotics, both oral and parenteral, can have significant effects on the microbial ecosystem of the human gastrointestinal tract. The susceptibilities of the majority of the
    bacteria that comprise the microbiome are rarely taken into consideration when prescribing because they are often thought to be of little clinical significance, until patients subsequently develop antibiotic-associated diarrhea or contract an
    opportunistic infection by Clostridium difficile and even develop pseudomembranous colitis, a life-threatening condition (16,17). The effects of antibiotics on the gut microbiome have been well documented, and may persist for a period up to many months
    after a treatment course has been completed, typically resulting in a decrease in both abundance and diversity of bacterial genera (18,19).

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)Other Section

    CP/CPPS is characterized by a variety of symptoms, and has been shown to have a significant impact on quality of life (20). While most typically associated with pain in the pelvic region, patients may have varying degrees of obstructive and/or irritative
    voiding symptoms, pain with ejaculation, sexual dysfunction, depression and/or psychosocial dysfunction that may be concomitant or related to the other symptoms. Chronic pelvic or genitourinary pain is a primary component of the condition and is
    typically present for at least three of the preceding 6 months. As much as 10–15% of the male population may be affected at some point in their lives, and affects men of all ages. Prostatitis is responsible for up to 2 million outpatient clinic visits
    per year, including 8% of all male visits to a urologist and 1% of men presenting to primary care physicians (21).

    Patients are often initially diagnosed as having a primary infection and treated empirically with or without culture-proven infection. They often receive prolonged doses of unnecessary antibiotics, as the disease entity is often incorrectly diagnosed as
    chronic bacterial prostatitis. One of the key diagnostic steps is separating the two entities with traditional mid-stream urine culture and/or properly collected prostatic localization cultures, which are up to 90% accurate in localizing a bacterial
    source if one is present within the lower urinary tract (22). If culture results are negative and no other clear etiology can be identified, then the patient is presumed to have CP/CPPS.

    While a primary infectious agent may not be the cause of ongoing symptoms, it has been suggested that infection may be a precipitating factor. Many organisms have been implicated has possible sources of undocumented infection, including Mycoplasma
    hominis, Trichomonas vaginalis, Candida species, Ureaplasma urealyticum, Chlamydia trachomatis, herpes simplex virus, and even parasites (23-29). Such an infection may actually be an inciting incident rather than an ongoing cause that leads to
    development of the clinical syndrome. Other possible inciting factors may include a history of trauma, autoimmune reaction, or dysfunctional voiding. Subsequently patients develop localized inflammation or neurological damage in the pelvic region or the
    peri-prostatic area, and the unresolved inflammation and chemokine expression further potentiate tissue injury. Patients may even develop pelvic floor dysfunction as a result (30). Sensitization is thought to occur at a CNS level, resulting in an altered
    visceral pain response and chronic neuropathic state (22). A number of risk factors have been suggested in the pathophysiology of CP/CPPS, including intra-prostatic urinary reflux, hormonal imbalances, psychological factors, autoimmune disease,
    musculoskeletal dysfunction, voiding dysfunction, and cytokine imbalances (31-37). However none of these have revealed a definitive pathway for the development of CP/CPPS, and unfortunately no validated biomarkers exist to aid in the diagnosis or
    clinical severity of CP/CPPS.

    In order to distinguish CP/CPPS from other similar clinical entities, the National Institutes of Health (NIH) delineates it as one of four sub-categories of prostatitis. Acute bacterial prostatitis is classified as category I, and antibiotics targeted
    towards a specific uropathogen are a mainstay of treatment. Category II is chronic bacterial prostatitis, with recurrent urinary tract infections with the same uropathogen that may be recovered from prostate fluid in between symptomatic episodes. Again,
    targeted antibiotics based on localization cultures are a mainstay of treatment. Category IV represents asymptomatic inflammatory prostatitis, which by definition is in the absence of pain or urinary symptoms, and is most often found incidentally during
    an evaluation for other indications, such as prostate biopsy for prostate cancer. The clinical significance of category IV prostatitis is unknown. CP/CPPS comprises category III prostatitis, which is further subdivided into inflammatory (IIIA) and non-
    inflammatory (IIIB) sub-types, as differentiated by the presence of leukocytes in extraprostatic secretions, post-prostate massage urine specimens (VB3), or semen (38,39). The distinction between IIIA and IIIB prostatitis, however, has not been shown to
    have an impact on symptoms (40). As a result CP/CPPS is often a diagnosis of exclusion, as it is considered the most likely diagnosis in the absence of other identifiable causative factors such as growth of known uropathogens on standard culture media.
    Unlike its counterparts, CP/CPPS presents unique difficulties in diagnosis and management as the etiology and mechanisms by which it occurs are not well understood.

    In order to begin addressing this ambiguity, the NIH Chronic Prostatitis Clinical Research Network recognized the need for a universally accepted, properly validated outcome measure for both clinical and research applications. The consensus panel
    developed a nine-item questionnaire, dubbed the NIH Chronic Prostatitis Symptom Index (NIH-CPSI), which addresses four major domains of symptoms: pain/discomfort, urination, impact and quality of life (39). This tool has been validated and is used as a
    standard measure of disease severity in CP/CPPS (41). In practice a threshold 6-point decline in NIH-CPSI score is considered necessary for patients to say they are significantly better (42).

    Treatment approaches to CP/CPPSOther Section

    Antibiotics are largely ineffective in the treatment of CP/CPPS as the chronic nature of the syndrome is thought not to be completely attributable to an ongoing active or latent bacterial infection (43-45). Despite this, up to almost 80% of CP/CPPS
    patients receive antibiotics as treatment at some point during their disease course, more than 7 times that of non-CP/CPPS patients, and many receive multiple rounds of antibiotics despite lack of efficacy (46). Many other monotherapies have been applied
    in prospective, randomized, placebo-controlled clinical trials, including anti-inflammatory drugs, finasteride, phytotherapies, alpha-receptor blockers, antianxiolytics, and the interstitial cystitis drug pentosan polysulfate. No single drug has been
    able to show consistent, significant benefit in CP/CPPS patients (47).

    The goal of treatment for CP/CPPS is primarily symptom relief. CP/CPPS patients often present with a constellation of symptoms despite their singular categorization; the failure of monotherapy is thought to be due to this heterogeneity. One of the early
    studies that was undertaken after recognition of this problem took a step-wise approach to prostatitis treatment. Of 54 patients with either category II or III prostatitis, patients were treated with antibiotic therapy initially. If this failed they were
    moved on to quercetin for its anti-inflammatory properties; if this failed they were then treated with neuromuscular-acting drugs such as amitriptyline or gabapentin. Patients with concomitant urinary symptoms or elevated post-void residual volumes were
    treated with the alpha-blocker tamsulosin. Adjunctive therapies such as finasteride or sodium pentosan polysulfate were incorporated into the treatment algorithm in select patients. Following the outlined treatment algorithm the investigators saw
    significant (≥6 point) mean decreases in NIH-CPSI in all three domains (pain, urinary, quality of life). While the authors note that the NIH-CPSI was not designed as a diagnostic tool to evaluate treatment response, they do conclude that a step-wise,
    multimodal approach to therapy for long-standing CP/CPPS may be more effective than monotherapy protocols (48). A subsequent study involving the use of step-wise monotherapy strategy confirmed that patients with refractory CP/CPPS did show modest benefit
    as compared to monotherapy alone, but that the responses to this approach were still suboptimal, and instead multimodal, concurrent therapy would potentially be more appropriate (49).

    UPOINT: clinical phenotyping and targeted multimodal treatmentOther Section

    Given the multifactorial etiology of CP/CPPS and a lack of specific biomarkers available to characterize it, the practitioner and patient are more likely to benefit from a more systematic approach to classification based on phenotype. By doing so the
    variable presentation and symptom severity with which CP/CPPS presents can be taken into account. A number of large multicenter trials have failed to show significant benefit of many different treatment options as compared to placebo, which in part may
    be due to the heterogeneity of the patients classified as having CP/CPPS. In response to this dilemma, a multimodal approach to classifying urologic chronic pelvic pain [both CP/CPPS and interstitial cystitis/bladder pain syndrome (IC/BPS)] into
    qualitative clinical domains was created (50). The system, known as UPOINT, is an acronym derived from the six clinically defined areas being addressed: urinary symptoms, psychosocial dysfunction, organ-specific findings, infection, neurologic/systemic,
    and tenderness of muscles. Intentionally, each of these domains is associated with a specific approach to therapy. As a result, UPOINT confers unto the practitioner the ability to not only diagnose and classify chronic pelvic pain syndromes, but to
    develop a tailored, multi-modal treatment plan for each patient (41,51). The number of positive UPOINT domains has been shown to correlate with the NIH-CPSI in a study of 90 patients diagnosed with CP/CPPS at the Cleveland Clinic. As expected, the inter-
    individual variability in the diversity of positive domains between patients reflected the heterogeneity in symptoms. The authors also found a correlation between symptom duration and the number of positive UPOINT domains, which is consistent with the
    understanding that ongoing, unresolved inflammatory processes propagate the magnitude of the syndrome (52).

    The use of UPOINT classification to direct treatment was demonstrated in a prospective study of 100 patients with CP/CPPS seen at a single institution. Treatment was directed based on UPOINT clinical phenotyping, and treatment response was measured using
    NIH-CPSI score after a median follow-up of 50 weeks. Each UPOINT domain was interpreted as binary input, with the most common being organ-specific (positive in 70% of patients) as determined by the presence of prostatic tenderness on examination,
    leukocytosis in prostatic fluid or VB3 or hematospermia. Each UPOINT domain was assigned a specific treatment targeted to the specific symptoms characteristic of that domain. Of the 100 patients enrolled in the study, 84% achieved an improvement in NIH-
    CPSI score of 6 points or greater. Over half of patients had a greater than 50% improvement and 84% had a greater than 25% improvement. The total number of positive UPOINT domains, initial CPSI, symptom duration and number of previous therapies did not
    have statistically significant relationships with treatment response (53). A more recent retrospective observational study of 914 patients validated the use of UPOINT to direct multimodal therapy. Patients were sub-categorized patients as having
    inflammatory (NIH category IIIA) versus non-inflammatory (NIH category IIIB) CP/CPPS, clinically phenotyped according to UPOINTS (a modification of UPOINT with the addition of a sexual dysfunction domain), and compared NIH-CPSI and International Index of
    Erectile Function (IIEF) before and after treatment. A combination pharmacological treatment targeted to the urinary, organ-specific and infection domains of UPOINTS included alfuzosin and Serenoa repens (saw palmetto berry extract), the latter of which
    was administered alone or in combination with lycopene and selenium. Oral antimicrobial therapy was added for patients with culture-confirmed prostate-specific microorganisms. At a total of 18 months follow-up, 77.5% of patients saw improvements in NIH-
    CPSI of six points or greater, with improvements in both total CPSI and voiding symptoms in patients who received antibiotics over those who did not receive antibiotics regardless of whether they were initially classified as category IIIA or IIIB
    prostatitis (54).

    QuercetinOther Section

    As the scientific method is applied to what are traditionally considered “complementary and alternative” medical therapies, the discovery of potentially bioactive properties in naturally-occurring biological compounds is receiving wide spread
    recognition in the peer-reviewed literature (55-59).

    The bioflavonoid quercetin has been identified as a compound with effects on both gut microbiota composition and CP/CPPS, though the mechanism by which it exerts its effects, particularly in the latter, is not well known. In a prospective, double-blind,
    randomized placebo-controlled trial, Shoskes and colleagues investigated the use of the quercetin-containing commercial drug, Prost-Q, as a treatment option for men with category III chronic prostatitis (60). A prior study had shown that quercetin intake
    resulted in significant symptomatic improvement in 59% of men with chronic prostatitis (61). Thirty patients who met criteria for CP/CPPS and had never taken quercetin before were enrolled in the study. Half were randomized to quercetin capsules 500 mg
    orally twice daily while the other half ingested an identical-appearing placebo. In the treatment arm, NIH-CPSI scores showed a mean improvement of 35% as compared to 7.2% in the placebo group. The greatest changes were seen in patients’ pain and
    quality-of-life scores, but quercetin did not appear to significantly affect the urinary score, further supporting the need to assess and treat CP/CPPS as a syndrome with a constellation of symptoms rather than by attempting to address it through
    monotherapy.

    While quercetin has previously been cited to exercise both anti-inflammatory and anti-obesity effects, the mechanism by which these properties exist is largely unknown (62,63). In vitro, quercetin has been shown to increase PTEN expression and
    downregulate the AKT pathway (64). As has been recently shown, PTEN plays a role in development of the immune system (65,66). Similarly, diet and obesity have been shown to be associated with imbalances in the gut microbiome (67,68). Owing to the fact
    that quercetin is known to be poorly absorbed in the gastrointestinal tract and the majority of the dosage reaches the colon intact (69,70), Etxeberria and colleagues postulated that oral administration of quercetin might exert some of its anti-obesity
    effects through alterations in the gut microbial ecosystem (71). The study authors induced dysbiosis of the gut microbiome by feeding Wistar rats a high-fat sucrose diet, and subsequently treating them with quercetin, trans-resveratol, or a combination
    of the two. The combination treatment group trended towards a decrease in body weight gain as compared to controls, and supplementation of either compound led to significant decreases in serum insulin levels and insulin resistance. Analysis of fecal
    matter revealed that rats treated with quercetin mitigated the increases in Firmicutes levels, which have previously been described in diet-induced rat models of obesity, and significantly decreased the Firmicutes/Bacteroidetes ratio. The expected growth
    of bacterial species associated with diet-induced obesity (Erysipelotrichaeceae, Bacillus, Eubacterium cylindroides) was also inhibited in quercetin-fed rats. Conversely, these rats also showed increases in certain bacteria (Bacteroides vulgatus,
    Akkermansia muciniphila) that have been shown to be inversely related to obesity (72). The administration of trans-resveratol did not show similar effects on the gut microbiome. The authors concluded that quercetin can significantly alter the expected
    dysbiosis of the gut microbiome, that otherwise can be induced by a high-fat “Western-style” diet (71).

    The microbiome in urologic chronic pain syndromesOther Section

    Long considered to be a sterile environment, more recent studies have shown that urinary tract harbors its own unique microbiome. Comparison of urine specimens to healthy controls have shown that the microbiota differ in varying urologic diseases,
    including urge urinary incontinence, neurogenic bladder dysfunction, and urologic chronic pain syndromes such as interstitial cystitis and chronic nonbacterial prostatitis. In addition, alterations in the normal stool microbiome have shown correlations
    with the presence of urologic diseases as with many other areas of the body that are thought to be physically distinct from the gut (73). For example, patients with renal calcium oxalate stones have been shown to have decreased Oxalobacter formigenes in
    the gut microbiome, a bacterial known to degrade dietary oxalate and thus is thought to at least be partially irresponsible for lower levels of urinary oxalate (74-76). Unfortunately a mechanistic relationship between the gut microbiome and urologic
    disease is not always so straightforward to discern.

    As discussed previously, the absence of any identifiable bacterial infection is a hallmark of CP/CPPS. The current definition relies upon the use of in vitro bacterial detection techniques facilitated by culture media optimized for the growth and
    replication of specific microorganisms. The microbiomic approach to bacterial detection instead uses a culture-independent method of isolating the 16S ribosomal RNA from existing bacteria present in the collected specimen and amplifies this genomic
    material, without relying on amplification/replication of the whole microorganism itself (77).

    Early studies applying these culture-independent PCR-based methods of detecting uropathogens in expressed prostatic secretions prostatitis patients demonstrated the presence of detectable bacterial ribosomal RNA in both chronic bacterial prostatitis and
    chronic non-bacterial prostatitis (78). Higher levels of 16S ribosomal RNA have been detected in prostate tissue or prostatic fluid of patients with prostate cancer, benign prostatic hyperplasia and CP/CPPS (78,79). Many previous studies have attempted
    to evaluate the bacterial flora present within the prostate using prostate tissue either from biopsies or whole-gland sections (80). However, there also has been variability in how patients were categorized as having CP/CPPS (81). In one study of men
    with CP/CPPS, it was hypothesized that the local microbiota of the prostate in CP/CPPS patients would be different than that of controls, either due to or being the cause of an inflammatory process within the tissue. The study authors found that there
    was a larger abundance of 16S ribosomal RNA in CP/CPPS patients as opposed to prostate cancer, however further characterization of the microbial dysbiosis at the taxonomic level or correlation with clinical phenotype were not explored (80).

    No definitive targetable pathogen or pattern of microbial dysbiosis within prostate tissue has been identified that was clearly correlated with CP/CPPS in the absence of other confounding variables such as prostate cancer or other proper controls (82-84).
    A recent study by Nickel et al. compared urethral and bladder urine specimens from CP/CPPS patients in the Multi-Disciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Network Study, and found differences in the CP/CPPS urinary microbiome as
    compared to control patients, more specifically an increase in Burkholderia cenocepacia in urethral specimens. Interestingly this study used mass spectrometry techniques to identify bacterial genera than more conventional sequencing and OTU-picking
    protocols, and like many prior studies the incorporation of a quality control screen was not included in the study protocol (85). Furthermore the role of the gut microbiome in CP/CPPS has remained unexplored until recently.

    CP/CPPS patients often have received multiple, sometimes long courses of oral antibiotics in order to treat possible infectious causes prior to presenting to the practitioner who take a phenotypic approach to treatment (46). Ciprofloxacin for example, a
    fluoroquinolone antibiotic that is very commonly used to treat genitourinary infections and is often prescribed for CP/CPPS patients at initial presentation prior to the proper diagnosis being made, has been shown to alter the microbiome. In a small
    study of three individuals, each received a 5-day course of twice daily oral ciprofloxacin, which is a typical treatment for an uncomplicated urinary tract infection. Stool samples were subsequently collected and processed. Analysis revealed alterations
    to both the abundance and diversity of the gut microbiome, with changes persisting until about 4 weeks after treatment ended (86).

    In a comprehensive approach to evaluating changes in the gut microbiome in men with category III prostatitis, Shoskes and colleagues attempted to correlate findings with clinical measurements such as symptom severity using the NIH-CPSI and phenotype
    using UPOINT (87). CP/CPPS patients showed a pattern of clustering distinct from demographically similar controls, and analysis revealed lower mean alpha diversity of the gut microbiome in the CP/CPPS group, with significantly different gut microbial
    taxa between the two groups, the most significant of which was underrepresentation of Prevotella (genus), known to colonize the gastrointestinal tract and suspected to play a role in mitigating inflammation, as compared to controls. Correlations with
    measures of symptom severity, including CPSI, UPOINT score, symptom duration, gastrointestinal or neurological symptoms did not reveal significant differences in the gut microbiome of patients versus controls, however there were non-statistically
    significant trends towards tighter OTU clustering in those patients with neurological symptoms and CPSI less than 26 (87). In a contrasting parallel study of the urinary microbiome of these patients, the authors found a higher alpha diversity as compared
    to controls (88). There does exist precedent for findings of higher bacterial diversity in correlation with urinary symptoms, as in a study of women with urge urinary incontinence in whom response to the anticholinergic medication solifenacin was
    inversely related to microbial diversity as well (89). In another study of women with an oft-equated pain syndrome, interstitial cystitis, urinary microbiome showed lower alpha diversity. However this was thought to be due to overabundance of
    lactobacilli, a common contaminant from the vagina. It is currently unclear why patients with CP/CPPS would have a greater alpha diversity of their urinary microbiome, as after receiving multiple rounds of antibiotics it would have seemed intuitive that
    alpha diversity would be lower if anything as compared to controls. Unlike the gut microbiome, significant differences in the urinary microbiome were found to be related to symptom severity, symptom duration and UPOINT phenotypic domains for psychosocial
    and neurologic symptoms. In the urinary microbiome findings Porphyromas genera were most overrepresented, a more common component of oral cavity flora. While it may have been suspected that increases symptom severity and symptom duration would be due to
    a similar pattern of microbial dysbiosis, LEfSe analysis revealed that different sets of bacterial taxa were overrepresented in the psychosocial-predominant and neurologic-predominant groups (88). The authors conclude that the observed differences in the
    gut or urinary microbiome may present potential objective biomarkers for clearly identifying CP/CPPS in patients with pelvic pain rather than relying on purely clinical or phenotypic variables for classification, however further study is needed.

    Microbiome differences have likewise been discovered in another poorly understood urologic pelvic pain syndrome, IC/BPS in women. Whereas bacterial pain phenotypes have been identified in murine models of urinary tract infection, a group from
    Northwestern University hypothesized that the microbiome of adjacent organs, namely the gut and reproductive tract, might modulate pelvic pain through organ crosstalk visceral sensory pathways (90,91). While analysis of the vaginal microbiome did not
    yield significant differences between IC/BPS patients and controls, analysis of the stool (gut) microbiome revealed differential representation of specific bacterial species, suggesting that these characteristic changes in the microbiome may lead to use
    as potential biomarkers for the disease state (92). In an earlier study by the same group, female patients classified as having urologic CPPS were classified by self-report as currently having symptom “flares” (acute worsening of symptoms) versus no
    flares, and initial and mid-stream urine specimens were collected and microbiomes of urethral and mid-stream urine were analyzed. Comparison of microbial species between the two groups did not show significant differences between the two groups. However,
    after controlling for antibiotic use and menstrual phase, univariate analysis showed a greater prevalence of Candida and Saccharomyces fungal species in midstream urine specimens, indicating a potential difference in the mycobiome rather than the
    microbiome of patients experiencing a flare (93).

    SummaryOther Section


    [continued in next message]

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From II@21:1/5 to All on Tue Jul 11 22:27:58 2017
    Home / Vol 5, No 2 (January 2017) / Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome

    http://atm.amegroups.com/article/view/13313/html

    Review Article

    Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome
    Hans C. Arora1, Charis Eng2, Daniel A. Shoskes1
    1Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA; 2Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
    Contributions: (I) Conception and design: All authors; (II) Administrative support: C Eng, DA Shoskes; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: HC Arora; (V) Data analysis and interpretation: All
    authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

    Correspondence to: Daniel A. Shoskes, MD. Cleveland Clinic, 9500 Euclid Avenue, Q10-1, Cleveland, OH 44195, USA. Email: dsho...@gmail.com.
    Abstract: Analysis of the human microbiome continues to reveal new and previously unrealized associations between microbial dysbiosis and disease. Novel approaches to bacterial identification using culture-independent methods allow practitioners to
    discern the presence of alterations in the taxa and diversity of the microbiome and identify correlations with disease processes. While some of these diseases that have been extensively studied are well-defined in their etiology and treatment methods (
    colorectal cancer), others have provided much more significant challenges in both diagnosis and treatment. One such condition, chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), has several etiological and potentiating contributions from
    infection, inflammation, central nervous system (CNS) changes, stress, and central sensitization—all factors that play important roles in the crosstalk between the human body and its microbiome. No singular cause of CP/CPPS has been identified and it
    is most likely a syndrome with multifactorial causes. This heterogeneity and ambiguity are sources of significant frustration for patients and providers alike. Despite multiple attempts, treatment of chronic prostatitis with monotherapy has seen limited
    success, which is thought to be due to its heterogeneous nature. Phenotypic approaches to both classify the disease and direct treatment for CP/CPPS have proven beneficial in these patients, but questions still remain regarding etiology. Newer microbiome
    research has found correlations between symptom scores and disease severity and the degree of dysbiosis in urine and gut (stool) microbiomes in these patients as compared to un-afflicted controls. These findings present potential new diagnostic and
    therapeutic targets in CP/CPPS patients.

    Keywords: Microbiota; prostatitis; chronic pain; pelvic pain

    Submitted Aug 18, 2016. Accepted for publication Sep 12, 2016.

    doi: 10.21037/atm.2016.12.32

    Increasing interest has been directed towards the study of the human microbiome, defined as the ecological community of commensal, symbiotic, and pathogenic microorganisms and their genetic content inhabiting the human body (1). While our own human
    genome contains approximately 20,000 protein-encoding genes, it has been estimated that the sheer number of microbiota living on and inside of us is at least 10 times the number of somatic and germ cells in our bodies (2). As we are beginning to
    understand the role of the microbiome in healthy humans, it is becoming increasingly clear that there exists interplay and symbiotic relationships between our bodies and these microorganisms, the most abundant of which can be found in the gut. Deviations
    from the “normal” human gut microbiome have been discovered in a variety of diseases and conditions, including inflammatory bowel disease, colorectal cancer, obesity/metabolic syndrome, type 2 diabetes mellitus, breast cancer, autoimmune disease,
    autism spectrum disorder, post-traumatic stress disorder and responsiveness to visceral pain (3-10). Studies in small mammals are revealing even more relationships between the gut microbiome and the central nervous system (CNS) than previously thought,
    suggesting the existence of a “gut-brain axis” whereby the gut microbiome modulates the CNS and/or vice versa (11-14). Still, these differences are only correlative, and to date causative mechanistic relationships between alterations in the
    microbiome, also known a microbial dysbiosis, and human pathology have yet to be discovered.

    Many of the human tissues or bodily fluids studied had previously been considered sterile per conventional culture methods. With the advent of polymerase chain reaction (PCR) technology, it is possible to selectively amplify the 16S ribosomal RNA found
    only in bacteria allowing identification of differences in all of the genera and species present in a specimen without the need for culture-selective media and microbial replication. These differences may be reflected at the ecological level (alpha
    diversity) and at the individual genus and species level.

    The microbiome is not static, but responds and evolves in response to environmental factors. As may be expected, the gut microbiome is molded by oral intake of both food and medications. Variation in diet between cultures and dietary lifestyles lead to
    rapid and reproducible changes in the human gut microbiome (15). Similarly, antibiotics, both oral and parenteral, can have significant effects on the microbial ecosystem of the human gastrointestinal tract. The susceptibilities of the majority of the
    bacteria that comprise the microbiome are rarely taken into consideration when prescribing because they are often thought to be of little clinical significance, until patients subsequently develop antibiotic-associated diarrhea or contract an
    opportunistic infection by Clostridium difficile and even develop pseudomembranous colitis, a life-threatening condition (16,17). The effects of antibiotics on the gut microbiome have been well documented, and may persist for a period up to many months
    after a treatment course has been completed, typically resulting in a decrease in both abundance and diversity of bacterial genera (18,19).

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)Other Section

    CP/CPPS is characterized by a variety of symptoms, and has been shown to have a significant impact on quality of life (20). While most typically associated with pain in the pelvic region, patients may have varying degrees of obstructive and/or irritative
    voiding symptoms, pain with ejaculation, sexual dysfunction, depression and/or psychosocial dysfunction that may be concomitant or related to the other symptoms. Chronic pelvic or genitourinary pain is a primary component of the condition and is
    typically present for at least three of the preceding 6 months. As much as 10–15% of the male population may be affected at some point in their lives, and affects men of all ages. Prostatitis is responsible for up to 2 million outpatient clinic visits
    per year, including 8% of all male visits to a urologist and 1% of men presenting to primary care physicians (21).

    Patients are often initially diagnosed as having a primary infection and treated empirically with or without culture-proven infection. They often receive prolonged doses of unnecessary antibiotics, as the disease entity is often incorrectly diagnosed as
    chronic bacterial prostatitis. One of the key diagnostic steps is separating the two entities with traditional mid-stream urine culture and/or properly collected prostatic localization cultures, which are up to 90% accurate in localizing a bacterial
    source if one is present within the lower urinary tract (22). If culture results are negative and no other clear etiology can be identified, then the patient is presumed to have CP/CPPS.

    While a primary infectious agent may not be the cause of ongoing symptoms, it has been suggested that infection may be a precipitating factor. Many organisms have been implicated has possible sources of undocumented infection, including Mycoplasma
    hominis, Trichomonas vaginalis, Candida species, Ureaplasma urealyticum, Chlamydia trachomatis, herpes simplex virus, and even parasites (23-29). Such an infection may actually be an inciting incident rather than an ongoing cause that leads to
    development of the clinical syndrome. Other possible inciting factors may include a history of trauma, autoimmune reaction, or dysfunctional voiding. Subsequently patients develop localized inflammation or neurological damage in the pelvic region or the
    peri-prostatic area, and the unresolved inflammation and chemokine expression further potentiate tissue injury. Patients may even develop pelvic floor dysfunction as a result (30). Sensitization is thought to occur at a CNS level, resulting in an altered
    visceral pain response and chronic neuropathic state (22). A number of risk factors have been suggested in the pathophysiology of CP/CPPS, including intra-prostatic urinary reflux, hormonal imbalances, psychological factors, autoimmune disease,
    musculoskeletal dysfunction, voiding dysfunction, and cytokine imbalances (31-37). However none of these have revealed a definitive pathway for the development of CP/CPPS, and unfortunately no validated biomarkers exist to aid in the diagnosis or
    clinical severity of CP/CPPS.

    In order to distinguish CP/CPPS from other similar clinical entities, the National Institutes of Health (NIH) delineates it as one of four sub-categories of prostatitis. Acute bacterial prostatitis is classified as category I, and antibiotics targeted
    towards a specific uropathogen are a mainstay of treatment. Category II is chronic bacterial prostatitis, with recurrent urinary tract infections with the same uropathogen that may be recovered from prostate fluid in between symptomatic episodes. Again,
    targeted antibiotics based on localization cultures are a mainstay of treatment. Category IV represents asymptomatic inflammatory prostatitis, which by definition is in the absence of pain or urinary symptoms, and is most often found incidentally during
    an evaluation for other indications, such as prostate biopsy for prostate cancer. The clinical significance of category IV prostatitis is unknown. CP/CPPS comprises category III prostatitis, which is further subdivided into inflammatory (IIIA) and non-
    inflammatory (IIIB) sub-types, as differentiated by the presence of leukocytes in extraprostatic secretions, post-prostate massage urine specimens (VB3), or semen (38,39). The distinction between IIIA and IIIB prostatitis, however, has not been shown to
    have an impact on symptoms (40). As a result CP/CPPS is often a diagnosis of exclusion, as it is considered the most likely diagnosis in the absence of other identifiable causative factors such as growth of known uropathogens on standard culture media.
    Unlike its counterparts, CP/CPPS presents unique difficulties in diagnosis and management as the etiology and mechanisms by which it occurs are not well understood.

    In order to begin addressing this ambiguity, the NIH Chronic Prostatitis Clinical Research Network recognized the need for a universally accepted, properly validated outcome measure for both clinical and research applications. The consensus panel
    developed a nine-item questionnaire, dubbed the NIH Chronic Prostatitis Symptom Index (NIH-CPSI), which addresses four major domains of symptoms: pain/discomfort, urination, impact and quality of life (39). This tool has been validated and is used as a
    standard measure of disease severity in CP/CPPS (41). In practice a threshold 6-point decline in NIH-CPSI score is considered necessary for patients to say they are significantly better (42).

    Treatment approaches to CP/CPPSOther Section

    Antibiotics are largely ineffective in the treatment of CP/CPPS as the chronic nature of the syndrome is thought not to be completely attributable to an ongoing active or latent bacterial infection (43-45). Despite this, up to almost 80% of CP/CPPS
    patients receive antibiotics as treatment at some point during their disease course, more than 7 times that of non-CP/CPPS patients, and many receive multiple rounds of antibiotics despite lack of efficacy (46). Many other monotherapies have been applied
    in prospective, randomized, placebo-controlled clinical trials, including anti-inflammatory drugs, finasteride, phytotherapies, alpha-receptor blockers, antianxiolytics, and the interstitial cystitis drug pentosan polysulfate. No single drug has been
    able to show consistent, significant benefit in CP/CPPS patients (47).

    The goal of treatment for CP/CPPS is primarily symptom relief. CP/CPPS patients often present with a constellation of symptoms despite their singular categorization; the failure of monotherapy is thought to be due to this heterogeneity. One of the early
    studies that was undertaken after recognition of this problem took a step-wise approach to prostatitis treatment. Of 54 patients with either category II or III prostatitis, patients were treated with antibiotic therapy initially. If this failed they were
    moved on to quercetin for its anti-inflammatory properties; if this failed they were then treated with neuromuscular-acting drugs such as amitriptyline or gabapentin. Patients with concomitant urinary symptoms or elevated post-void residual volumes were
    treated with the alpha-blocker tamsulosin. Adjunctive therapies such as finasteride or sodium pentosan polysulfate were incorporated into the treatment algorithm in select patients. Following the outlined treatment algorithm the investigators saw
    significant (≥6 point) mean decreases in NIH-CPSI in all three domains (pain, urinary, quality of life). While the authors note that the NIH-CPSI was not designed as a diagnostic tool to evaluate treatment response, they do conclude that a step-wise,
    multimodal approach to therapy for long-standing CP/CPPS may be more effective than monotherapy protocols (48). A subsequent study involving the use of step-wise monotherapy strategy confirmed that patients with refractory CP/CPPS did show modest benefit
    as compared to monotherapy alone, but that the responses to this approach were still suboptimal, and instead multimodal, concurrent therapy would potentially be more appropriate (49).

    UPOINT: clinical phenotyping and targeted multimodal treatmentOther Section

    Given the multifactorial etiology of CP/CPPS and a lack of specific biomarkers available to characterize it, the practitioner and patient are more likely to benefit from a more systematic approach to classification based on phenotype. By doing so the
    variable presentation and symptom severity with which CP/CPPS presents can be taken into account. A number of large multicenter trials have failed to show significant benefit of many different treatment options as compared to placebo, which in part may
    be due to the heterogeneity of the patients classified as having CP/CPPS. In response to this dilemma, a multimodal approach to classifying urologic chronic pelvic pain [both CP/CPPS and interstitial cystitis/bladder pain syndrome (IC/BPS)] into
    qualitative clinical domains was created (50). The system, known as UPOINT, is an acronym derived from the six clinically defined areas being addressed: urinary symptoms, psychosocial dysfunction, organ-specific findings, infection, neurologic/systemic,
    and tenderness of muscles. Intentionally, each of these domains is associated with a specific approach to therapy. As a result, UPOINT confers unto the practitioner the ability to not only diagnose and classify chronic pelvic pain syndromes, but to
    develop a tailored, multi-modal treatment plan for each patient (41,51). The number of positive UPOINT domains has been shown to correlate with the NIH-CPSI in a study of 90 patients diagnosed with CP/CPPS at the Cleveland Clinic. As expected, the inter-
    individual variability in the diversity of positive domains between patients reflected the heterogeneity in symptoms. The authors also found a correlation between symptom duration and the number of positive UPOINT domains, which is consistent with the
    understanding that ongoing, unresolved inflammatory processes propagate the magnitude of the syndrome (52).

    The use of UPOINT classification to direct treatment was demonstrated in a prospective study of 100 patients with CP/CPPS seen at a single institution. Treatment was directed based on UPOINT clinical phenotyping, and treatment response was measured using
    NIH-CPSI score after a median follow-up of 50 weeks. Each UPOINT domain was interpreted as binary input, with the most common being organ-specific (positive in 70% of patients) as determined by the presence of prostatic tenderness on examination,
    leukocytosis in prostatic fluid or VB3 or hematospermia. Each UPOINT domain was assigned a specific treatment targeted to the specific symptoms characteristic of that domain. Of the 100 patients enrolled in the study, 84% achieved an improvement in NIH-
    CPSI score of 6 points or greater. Over half of patients had a greater than 50% improvement and 84% had a greater than 25% improvement. The total number of positive UPOINT domains, initial CPSI, symptom duration and number of previous therapies did not
    have statistically significant relationships with treatment response (53). A more recent retrospective observational study of 914 patients validated the use of UPOINT to direct multimodal therapy. Patients were sub-categorized patients as having
    inflammatory (NIH category IIIA) versus non-inflammatory (NIH category IIIB) CP/CPPS, clinically phenotyped according to UPOINTS (a modification of UPOINT with the addition of a sexual dysfunction domain), and compared NIH-CPSI and International Index of
    Erectile Function (IIEF) before and after treatment. A combination pharmacological treatment targeted to the urinary, organ-specific and infection domains of UPOINTS included alfuzosin and Serenoa repens (saw palmetto berry extract), the latter of which
    was administered alone or in combination with lycopene and selenium. Oral antimicrobial therapy was added for patients with culture-confirmed prostate-specific microorganisms. At a total of 18 months follow-up, 77.5% of patients saw improvements in NIH-
    CPSI of six points or greater, with improvements in both total CPSI and voiding symptoms in patients who received antibiotics over those who did not receive antibiotics regardless of whether they were initially classified as category IIIA or IIIB
    prostatitis (54).

    QuercetinOther Section

    As the scientific method is applied to what are traditionally considered “complementary and alternative” medical therapies, the discovery of potentially bioactive properties in naturally-occurring biological compounds is receiving wide spread
    recognition in the peer-reviewed literature (55-59).

    The bioflavonoid quercetin has been identified as a compound with effects on both gut microbiota composition and CP/CPPS, though the mechanism by which it exerts its effects, particularly in the latter, is not well known. In a prospective, double-blind,
    randomized placebo-controlled trial, Shoskes and colleagues investigated the use of the quercetin-containing commercial drug, Prost-Q, as a treatment option for men with category III chronic prostatitis (60). A prior study had shown that quercetin intake
    resulted in significant symptomatic improvement in 59% of men with chronic prostatitis (61). Thirty patients who met criteria for CP/CPPS and had never taken quercetin before were enrolled in the study. Half were randomized to quercetin capsules 500 mg
    orally twice daily while the other half ingested an identical-appearing placebo. In the treatment arm, NIH-CPSI scores showed a mean improvement of 35% as compared to 7.2% in the placebo group. The greatest changes were seen in patients’ pain and
    quality-of-life scores, but quercetin did not appear to significantly affect the urinary score, further supporting the need to assess and treat CP/CPPS as a syndrome with a constellation of symptoms rather than by attempting to address it through
    monotherapy.

    While quercetin has previously been cited to exercise both anti-inflammatory and anti-obesity effects, the mechanism by which these properties exist is largely unknown (62,63). In vitro, quercetin has been shown to increase PTEN expression and
    downregulate the AKT pathway (64). As has been recently shown, PTEN plays a role in development of the immune system (65,66). Similarly, diet and obesity have been shown to be associated with imbalances in the gut microbiome (67,68). Owing to the fact
    that quercetin is known to be poorly absorbed in the gastrointestinal tract and the majority of the dosage reaches the colon intact (69,70), Etxeberria and colleagues postulated that oral administration of quercetin might exert some of its anti-obesity
    effects through alterations in the gut microbial ecosystem (71). The study authors induced dysbiosis of the gut microbiome by feeding Wistar rats a high-fat sucrose diet, and subsequently treating them with quercetin, trans-resveratol, or a combination
    of the two. The combination treatment group trended towards a decrease in body weight gain as compared to controls, and supplementation of either compound led to significant decreases in serum insulin levels and insulin resistance. Analysis of fecal
    matter revealed that rats treated with quercetin mitigated the increases in Firmicutes levels, which have previously been described in diet-induced rat models of obesity, and significantly decreased the Firmicutes/Bacteroidetes ratio. The expected growth
    of bacterial species associated with diet-induced obesity (Erysipelotrichaeceae, Bacillus, Eubacterium cylindroides) was also inhibited in quercetin-fed rats. Conversely, these rats also showed increases in certain bacteria (Bacteroides vulgatus,
    Akkermansia muciniphila) that have been shown to be inversely related to obesity (72). The administration of trans-resveratol did not show similar effects on the gut microbiome. The authors concluded that quercetin can significantly alter the expected
    dysbiosis of the gut microbiome, that otherwise can be induced by a high-fat “Western-style” diet (71).

    The microbiome in urologic chronic pain syndromesOther Section

    Long considered to be a sterile environment, more recent studies have shown that urinary tract harbors its own unique microbiome. Comparison of urine specimens to healthy controls have shown that the microbiota differ in varying urologic diseases,
    including urge urinary incontinence, neurogenic bladder dysfunction, and urologic chronic pain syndromes such as interstitial cystitis and chronic nonbacterial prostatitis. In addition, alterations in the normal stool microbiome have shown correlations
    with the presence of urologic diseases as with many other areas of the body that are thought to be physically distinct from the gut (73). For example, patients with renal calcium oxalate stones have been shown to have decreased Oxalobacter formigenes in
    the gut microbiome, a bacterial known to degrade dietary oxalate and thus is thought to at least be partially irresponsible for lower levels of urinary oxalate (74-76). Unfortunately a mechanistic relationship between the gut microbiome and urologic
    disease is not always so straightforward to discern.

    As discussed previously, the absence of any identifiable bacterial infection is a hallmark of CP/CPPS. The current definition relies upon the use of in vitro bacterial detection techniques facilitated by culture media optimized for the growth and
    replication of specific microorganisms. The microbiomic approach to bacterial detection instead uses a culture-independent method of isolating the 16S ribosomal RNA from existing bacteria present in the collected specimen and amplifies this genomic
    material, without relying on amplification/replication of the whole microorganism itself (77).

    Early studies applying these culture-independent PCR-based methods of detecting uropathogens in expressed prostatic secretions prostatitis patients demonstrated the presence of detectable bacterial ribosomal RNA in both chronic bacterial prostatitis and
    chronic non-bacterial prostatitis (78). Higher levels of 16S ribosomal RNA have been detected in prostate tissue or prostatic fluid of patients with prostate cancer, benign prostatic hyperplasia and CP/CPPS (78,79). Many previous studies have attempted
    to evaluate the bacterial flora present within the prostate using prostate tissue either from biopsies or whole-gland sections (80). However, there also has been variability in how patients were categorized as having CP/CPPS (81). In one study of men
    with CP/CPPS, it was hypothesized that the local microbiota of the prostate in CP/CPPS patients would be different than that of controls, either due to or being the cause of an inflammatory process within the tissue. The study authors found that there
    was a larger abundance of 16S ribosomal RNA in CP/CPPS patients as opposed to prostate cancer, however further characterization of the microbial dysbiosis at the taxonomic level or correlation with clinical phenotype were not explored (80).

    No definitive targetable pathogen or pattern of microbial dysbiosis within prostate tissue has been identified that was clearly correlated with CP/CPPS in the absence of other confounding variables such as prostate cancer or other proper controls (82-84).
    A recent study by Nickel et al. compared urethral and bladder urine specimens from CP/CPPS patients in the Multi-Disciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Network Study, and found differences in the CP/CPPS urinary microbiome as
    compared to control patients, more specifically an increase in Burkholderia cenocepacia in urethral specimens. Interestingly this study used mass spectrometry techniques to identify bacterial genera than more conventional sequencing and OTU-picking
    protocols, and like many prior studies the incorporation of a quality control screen was not included in the study protocol (85). Furthermore the role of the gut microbiome in CP/CPPS has remained unexplored until recently.

    CP/CPPS patients often have received multiple, sometimes long courses of oral antibiotics in order to treat possible infectious causes prior to presenting to the practitioner who take a phenotypic approach to treatment (46). Ciprofloxacin for example, a
    fluoroquinolone antibiotic that is very commonly used to treat genitourinary infections and is often prescribed for CP/CPPS patients at initial presentation prior to the proper diagnosis being made, has been shown to alter the microbiome. In a small
    study of three individuals, each received a 5-day course of twice daily oral ciprofloxacin, which is a typical treatment for an uncomplicated urinary tract infection. Stool samples were subsequently collected and processed. Analysis revealed alterations
    to both the abundance and diversity of the gut microbiome, with changes persisting until about 4 weeks after treatment ended (86).

    In a comprehensive approach to evaluating changes in the gut microbiome in men with category III prostatitis, Shoskes and colleagues attempted to correlate findings with clinical measurements such as symptom severity using the NIH-CPSI and phenotype
    using UPOINT (87). CP/CPPS patients showed a pattern of clustering distinct from demographically similar controls, and analysis revealed lower mean alpha diversity of the gut microbiome in the CP/CPPS group, with significantly different gut microbial
    taxa between the two groups, the most significant of which was underrepresentation of Prevotella (genus), known to colonize the gastrointestinal tract and suspected to play a role in mitigating inflammation, as compared to controls. Correlations with
    measures of symptom severity, including CPSI, UPOINT score, symptom duration, gastrointestinal or neurological symptoms did not reveal significant differences in the gut microbiome of patients versus controls, however there were non-statistically
    significant trends towards tighter OTU clustering in those patients with neurological symptoms and CPSI less than 26 (87). In a contrasting parallel study of the urinary microbiome of these patients, the authors found a higher alpha diversity as compared
    to controls (88). There does exist precedent for findings of higher bacterial diversity in correlation with urinary symptoms, as in a study of women with urge urinary incontinence in whom response to the anticholinergic medication solifenacin was
    inversely related to microbial diversity as well (89). In another study of women with an oft-equated pain syndrome, interstitial cystitis, urinary microbiome showed lower alpha diversity. However this was thought to be due to overabundance of
    lactobacilli, a common contaminant from the vagina. It is currently unclear why patients with CP/CPPS would have a greater alpha diversity of their urinary microbiome, as after receiving multiple rounds of antibiotics it would have seemed intuitive that
    alpha diversity would be lower if anything as compared to controls. Unlike the gut microbiome, significant differences in the urinary microbiome were found to be related to symptom severity, symptom duration and UPOINT phenotypic domains for psychosocial
    and neurologic symptoms. In the urinary microbiome findings Porphyromas genera were most overrepresented, a more common component of oral cavity flora. While it may have been suspected that increases symptom severity and symptom duration would be due to
    a similar pattern of microbial dysbiosis, LEfSe analysis revealed that different sets of bacterial taxa were overrepresented in the psychosocial-predominant and neurologic-predominant groups (88). The authors conclude that the observed differences in the
    gut or urinary microbiome may present potential objective biomarkers for clearly identifying CP/CPPS in patients with pelvic pain rather than relying on purely clinical or phenotypic variables for classification, however further study is needed.

    Microbiome differences have likewise been discovered in another poorly understood urologic pelvic pain syndrome, IC/BPS in women. Whereas bacterial pain phenotypes have been identified in murine models of urinary tract infection, a group from
    Northwestern University hypothesized that the microbiome of adjacent organs, namely the gut and reproductive tract, might modulate pelvic pain through organ crosstalk visceral sensory pathways (90,91). While analysis of the vaginal microbiome did not
    yield significant differences between IC/BPS patients and controls, analysis of the stool (gut) microbiome revealed differential representation of specific bacterial species, suggesting that these characteristic changes in the microbiome may lead to use
    as potential biomarkers for the disease state (92). In an earlier study by the same group, female patients classified as having urologic CPPS were classified by self-report as currently having symptom “flares” (acute worsening of symptoms) versus no
    flares, and initial and mid-stream urine specimens were collected and microbiomes of urethral and mid-stream urine were analyzed. Comparison of microbial species between the two groups did not show significant differences between the two groups. However,
    after controlling for antibiotic use and menstrual phase, univariate analysis showed a greater prevalence of Candida and Saccharomyces fungal species in midstream urine specimens, indicating a potential difference in the mycobiome rather than the
    microbiome of patients experiencing a flare (93).

    SummaryOther Section


    [continued in next message]

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Jake@21:1/5 to All on Sun Jun 14 20:19:58 2020
    Diet for prostatitis

    Diet should be one of the cornerstones of treatment for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Examining your diet is part of a whole-body approach to your health, especially since many causes of CP/CPPS and pelvic tension stem from
    problems that take place outside of the prostate. Certain foods and allergies to foods can create reactions in your body in the form of inflammation, and this can contribute to pelvic tension and pain. That is why looking at diet when diagnosing and
    treating CP/CPPS can help to eliminate inflammation.

    Diet for prostatitis is part of the NPAT treatment program for CP/CPPS. NPAT stands for:

    Natural treatments (ALCAT, elimination diets, and wheat-free diets) Phytotherapy (pollen and quercetin together with probiotics)
    Alternative Treatments (acupuncture, prostate massage, pelvic rehabilitation and therapy)
    Total body (exercise, chronic stress management, lifestyle)
    It is important for you to figure out and avoid foods that can exacerbate your symptoms. Common foods that have been found to exacerbate prostatitis symptoms include the following:

    Spicy foods
    Hot peppers
    Alcoholic beverages
    Acidic foods
    Wheat
    Gluten
    Caffeine
    Hot peppers derive their spiciness from capsaicin, which can increase rectal sensitivity in people with irritable bowel syndrome, a condition frequently found in men with CP/CPPS. Read more on Foods to Avoid.

    Bowel health and prostatitis seem to be connected. That is why eating foods containing probiotics or taking quality probiotic supplements is part of a healthy diet for prostatitis. Probiotics are the beneficial, or helpful, gut microflora and include
    bacteria that normally reside in balance with other bacteria in the intestinal tract.

    Other dietary causes of prostatitis could be related to a zinc deficiency or environmental pollutants like BPA (bisphenol-A), an ingredient in many plastic products and food containers such as canned foods, that seeps into the food supply.

    Food intolerance or food allergies can also contribute to prostatitis. The symptoms of a food intolerance or allergy may include vomiting, diarrhea, nausea, or abdominal pain. If you have a food intolerance you may also experience gas, bloating, headache,
    cramps, irritability, and nervousness. A food allergy is an immune system response, and the symptoms generally can affect the entire body. In addition to the symptoms already named, a food allergy can cause hives, itchy skin, shortness of breath, a
    sudden drop in blood pressure, and difficulty swallowing. Food intolerance symptoms can be uncomfortable, but food allergy symptoms can be life threatening.

    It can be challenging to identify an allergy or food intolerance. You may not react to a particular food for a few hours or even days. Your reaction may be a worsening of prostatitis symptoms instead of the common symptoms you would associate with an
    intolerance or allergy.

    If you think that a food allergy or intolerance could be contributing to your prostatitis symptoms, try an elimination diet or consider undergoing allergy testing. Some tests like the ALCAT test do throw out false positives and can be costly, so trying
    an elimination diet might be a good start.

    Many men find that going on a wheat-free diet or trying a gluten-free diet can help them manage their prostatitis symptoms. Wheat and a protein in wheat called gluten can cause inflammation, which can damage the body and cause illness. A gluten-free diet
    avoids barley, malt, triticale, and wheat.

    In general, it is important to eat a healthy diet as part of managing your prostatitis. Avoid foods that commonly are associated with triggering prostatitis and try to include plenty of whole and natural foods such as the following:

    Vegetables, especially cruciferous vegetables
    Fruits (but avoid acidic fruits if they affect your prostatitis)
    High-quality protein (plant protein is better than animal)
    Foods high in zinc or zinc supplements
    Omega-3 fatty acids and healthy fats found in the Mediterranean diet
    Foods high in fiber
    Following the Mediterranean diet can help you reduce inflammation in your body. Reduce the red meat you eat and instead opt for fish, beans, lentils, and nuts, which are all low in saturated fat and cholesterol. Eat foods high in zinc, omega-3 fatty
    acids, and lycopene, but if acidic tomatoes or fruits are a problem for your prostate try eliminating them. It is important to stay well hydrated with water, but you should avoid drinks like soda and caffeinated coffee or tea, which have been shown to
    exacerbate prostatitis symptoms. You should also limit or avoid alcohol, which can make symptoms worse.

    Studies have shown that certain foods may help improve prostatitis symptoms. Foods and supplements that may help with prostate and urinary health include the following:

    Calcium glycerophosphate (neutralizes acidic foods)
    Docusate (softens stools)
    Psyllium (fiber), polycarbophil (laxative)
    Water
    Baking soda
    As you can see, some of the things that have helped prostatitis patients in studies also affect bowel health, which is why daily use of probiotics is also key when considering diet for prostatitis. By getting your diet under control and eliminating foods
    that could be causing your prostatitis symptoms, you are going to feel a lot better as a whole.

    Editor’s comment:
    Generally following a diet like the Mediterranean diet will help reduce inflammation and promote healthy bacteria and immunity. The Mediterranean diet also has many other benefits for heart, prostate, and general health. Try and limit alcohol to 1-2
    glasses a day. Any more than that has been shown to negatively affect prostate health. Eat organic as much as possible within your budget. Make it a point of getting regular exercise to keep your weight under control as that will also help reduce
    inflammation.




    Living with Prostatitis
    Learning to Live with Prostatitis
    Dealing with the Pain of Prostatitis
    Can I Have Sex With Prostatitis?
    Overcoming Depression with Prostatitis
    Diet for Prostatitis
    Products and Devices to Help With Prostatitis
    Wheat-Free Diet for Prostatitis
    Foods to Avoid for Prostatitis
    Chemicals That Can Cause Prostatitis

    Prostatitis and Pelvic Pain News

    How Does Prostatitis Affect a Man’s Sexual Function?


    What Professions Have the Highest Risk of Prostatitis?


    What’s the Risk of Abscess in Prostatitis Patients?


    Aggressive Prostate Cancer Rates Up Nearly 100%


    Can A Pelvic Wand Treat Prostatitis?


    http://prostatitis.net/living-with-prostatitis/diet-for-prostatitis/




    On Friday, February 10, 2017 at 10:38:52 PM UTC-6, ⊙_⊙ wrote:
    http://atm.amegroups.com/article/view/13313/html

    Have a website account?Log In orRegister for exclusive website content.S
    Home / Vol 5, No 2 (January 2017) / Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome
    Review Article


    Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome

    Hans C. Arora1, Charis Eng2, Daniel A. Shoskes1
    1Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA; 2Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
    Contributions: (I) Conception and design: All authors; (II) Administrative support: C Eng, DA Shoskes; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: HC Arora; (V) Data analysis and interpretation:
    All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

    Correspondence to: Daniel A. Shoskes, MD. Cleveland Clinic, 9500 Euclid Avenue, Q10-1, Cleveland, OH 44195, USA. Email: dshoskes@gmail.com.
    Abstract: Analysis of the human microbiome continues to reveal new and previously unrealized associations between microbial dysbiosis and disease. Novel approaches to bacterial identification using culture-independent methods allow practitioners to
    discern the presence of alterations in the taxa and diversity of the microbiome and identify correlations with disease processes. While some of these diseases that have been extensively studied are well-defined in their etiology and treatment methods (
    colorectal cancer), others have provided much more significant challenges in both diagnosis and treatment. One such condition, chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), has several etiological and potentiating contributions from
    infection, inflammation, central nervous system (CNS) changes, stress, and central sensitization—all factors that play important roles in the crosstalk between the human body and its microbiome. No singular cause of CP/CPPS has been identified and it
    is most likely a syndrome with multifactorial causes. This heterogeneity and ambiguity are sources of significant frustration for patients and providers alike. Despite multiple attempts, treatment of chronic prostatitis with monotherapy has seen limited
    success, which is thought to be due to its heterogeneous nature. Phenotypic approaches to both classify the disease and direct treatment for CP/CPPS have proven beneficial in these patients, but questions still remain regarding etiology. Newer microbiome
    research has found correlations between symptom scores and disease severity and the degree of dysbiosis in urine and gut (stool) microbiomes in these patients as compared to un-afflicted controls. These findings present potential new diagnostic and
    therapeutic targets in CP/CPPS patients.

    Keywords: Microbiota; prostatitis; chronic pain; pelvic pain

    Submitted Aug 18, 2016. Accepted for publication Sep 12, 2016.

    doi: 10.21037/atm.2016.12.32

    Increasing interest has been directed towards the study of the human microbiome, defined as the ecological community of commensal, symbiotic, and pathogenic microorganisms and their genetic content inhabiting the human body (1). While our own human
    genome contains approximately 20,000 protein-encoding genes, it has been estimated that the sheer number of microbiota living on and inside of us is at least 10 times the number of somatic and germ cells in our bodies (2). As we are beginning to
    understand the role of the microbiome in healthy humans, it is becoming increasingly clear that there exists interplay and symbiotic relationships between our bodies and these microorganisms, the most abundant of which can be found in the gut. Deviations
    from the “normal” human gut microbiome have been discovered in a variety of diseases and conditions, including inflammatory bowel disease, colorectal cancer, obesity/metabolic syndrome, type 2 diabetes mellitus, breast cancer, autoimmune disease,
    autism spectrum disorder, post-traumatic stress disorder and responsiveness to visceral pain (3-10). Studies in small mammals are revealing even more relationships between the gut microbiome and the central nervous system (CNS) than previously thought,
    suggesting the existence of a “gut-brain axis” whereby the gut microbiome modulates the CNS and/or vice versa (11-14). Still, these differences are only correlative, and to date causative mechanistic relationships between alterations in the
    microbiome, also known a microbial dysbiosis, and human pathology have yet to be discovered.

    Many of the human tissues or bodily fluids studied had previously been considered sterile per conventional culture methods. With the advent of polymerase chain reaction (PCR) technology, it is possible to selectively amplify the 16S ribosomal RNA found
    only in bacteria allowing identification of differences in all of the genera and species present in a specimen without the need for culture-selective media and microbial replication. These differences may be reflected at the ecological level (alpha
    diversity) and at the individual genus and species level.

    The microbiome is not static, but responds and evolves in response to environmental factors. As may be expected, the gut microbiome is molded by oral intake of both food and medications. Variation in diet between cultures and dietary lifestyles lead to
    rapid and reproducible changes in the human gut microbiome (15). Similarly, antibiotics, both oral and parenteral, can have significant effects on the microbial ecosystem of the human gastrointestinal tract. The susceptibilities of the majority of the
    bacteria that comprise the microbiome are rarely taken into consideration when prescribing because they are often thought to be of little clinical significance, until patients subsequently develop antibiotic-associated diarrhea or contract an
    opportunistic infection by Clostridium difficile and even develop pseudomembranous colitis, a life-threatening condition (16,17). The effects of antibiotics on the gut microbiome have been well documented, and may persist for a period up to many months
    after a treatment course has been completed, typically resulting in a decrease in both abundance and diversity of bacterial genera (18,19).

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)Other Section

    CP/CPPS is characterized by a variety of symptoms, and has been shown to have a significant impact on quality of life (20). While most typically associated with pain in the pelvic region, patients may have varying degrees of obstructive and/or
    irritative voiding symptoms, pain with ejaculation, sexual dysfunction, depression and/or psychosocial dysfunction that may be concomitant or related to the other symptoms. Chronic pelvic or genitourinary pain is a primary component of the condition and
    is typically present for at least three of the preceding 6 months. As much as 10–15% of the male population may be affected at some point in their lives, and affects men of all ages. Prostatitis is responsible for up to 2 million outpatient clinic
    visits per year, including 8% of all male visits to a urologist and 1% of men presenting to primary care physicians (21).

    Patients are often initially diagnosed as having a primary infection and treated empirically with or without culture-proven infection. They often receive prolonged doses of unnecessary antibiotics, as the disease entity is often incorrectly diagnosed
    as chronic bacterial prostatitis. One of the key diagnostic steps is separating the two entities with traditional mid-stream urine culture and/or properly collected prostatic localization cultures, which are up to 90% accurate in localizing a bacterial
    source if one is present within the lower urinary tract (22). If culture results are negative and no other clear etiology can be identified, then the patient is presumed to have CP/CPPS.

    While a primary infectious agent may not be the cause of ongoing symptoms, it has been suggested that infection may be a precipitating factor. Many organisms have been implicated has possible sources of undocumented infection, including Mycoplasma
    hominis, Trichomonas vaginalis, Candida species, Ureaplasma urealyticum, Chlamydia trachomatis, herpes simplex virus, and even parasites (23-29). Such an infection may actually be an inciting incident rather than an ongoing cause that leads to
    development of the clinical syndrome. Other possible inciting factors may include a history of trauma, autoimmune reaction, or dysfunctional voiding. Subsequently patients develop localized inflammation or neurological damage in the pelvic region or the
    peri-prostatic area, and the unresolved inflammation and chemokine expression further potentiate tissue injury. Patients may even develop pelvic floor dysfunction as a result (30). Sensitization is thought to occur at a CNS level, resulting in an altered
    visceral pain response and chronic neuropathic state (22). A number of risk factors have been suggested in the pathophysiology of CP/CPPS, including intra-prostatic urinary reflux, hormonal imbalances, psychological factors, autoimmune disease,
    musculoskeletal dysfunction, voiding dysfunction, and cytokine imbalances (31-37). However none of these have revealed a definitive pathway for the development of CP/CPPS, and unfortunately no validated biomarkers exist to aid in the diagnosis or
    clinical severity of CP/CPPS.

    In order to distinguish CP/CPPS from other similar clinical entities, the National Institutes of Health (NIH) delineates it as one of four sub-categories of prostatitis. Acute bacterial prostatitis is classified as category I, and antibiotics targeted
    towards a specific uropathogen are a mainstay of treatment. Category II is chronic bacterial prostatitis, with recurrent urinary tract infections with the same uropathogen that may be recovered from prostate fluid in between symptomatic episodes. Again,
    targeted antibiotics based on localization cultures are a mainstay of treatment. Category IV represents asymptomatic inflammatory prostatitis, which by definition is in the absence of pain or urinary symptoms, and is most often found incidentally during
    an evaluation for other indications, such as prostate biopsy for prostate cancer. The clinical significance of category IV prostatitis is unknown. CP/CPPS comprises category III prostatitis, which is further subdivided into inflammatory (IIIA) and non-
    inflammatory (IIIB) sub-types, as differentiated by the presence of leukocytes in extraprostatic secretions, post-prostate massage urine specimens (VB3), or semen (38,39). The distinction between IIIA and IIIB prostatitis, however, has not been shown to
    have an impact on symptoms (40). As a result CP/CPPS is often a diagnosis of exclusion, as it is considered the most likely diagnosis in the absence of other identifiable causative factors such as growth of known uropathogens on standard culture media.
    Unlike its counterparts, CP/CPPS presents unique difficulties in diagnosis and management as the etiology and mechanisms by which it occurs are not well understood.

    In order to begin addressing this ambiguity, the NIH Chronic Prostatitis Clinical Research Network recognized the need for a universally accepted, properly validated outcome measure for both clinical and research applications. The consensus panel
    developed a nine-item questionnaire, dubbed the NIH Chronic Prostatitis Symptom Index (NIH-CPSI), which addresses four major domains of symptoms: pain/discomfort, urination, impact and quality of life (39). This tool has been validated and is used as a
    standard measure of disease severity in CP/CPPS (41). In practice a threshold 6-point decline in NIH-CPSI score is considered necessary for patients to say they are significantly better (42).

    Treatment approaches to CP/CPPSOther Section

    Antibiotics are largely ineffective in the treatment of CP/CPPS as the chronic nature of the syndrome is thought not to be completely attributable to an ongoing active or latent bacterial infection (43-45). Despite this, up to almost 80% of CP/CPPS
    patients receive antibiotics as treatment at some point during their disease course, more than 7 times that of non-CP/CPPS patients, and many receive multiple rounds of antibiotics despite lack of efficacy (46). Many other monotherapies have been applied
    in prospective, randomized, placebo-controlled clinical trials, including anti-inflammatory drugs, finasteride, phytotherapies, alpha-receptor blockers, antianxiolytics, and the interstitial cystitis drug pentosan polysulfate. No single drug has been
    able to show consistent, significant benefit in CP/CPPS patients (47).

    The goal of treatment for CP/CPPS is primarily symptom relief. CP/CPPS patients often present with a constellation of symptoms despite their singular categorization; the failure of monotherapy is thought to be due to this heterogeneity. One of the
    early studies that was undertaken after recognition of this problem took a step-wise approach to prostatitis treatment. Of 54 patients with either category II or III prostatitis, patients were treated with antibiotic therapy initially. If this failed
    they were moved on to quercetin for its anti-inflammatory properties; if this failed they were then treated with neuromuscular-acting drugs such as amitriptyline or gabapentin. Patients with concomitant urinary symptoms or elevated post-void residual
    volumes were treated with the alpha-blocker tamsulosin. Adjunctive therapies such as finasteride or sodium pentosan polysulfate were incorporated into the treatment algorithm in select patients. Following the outlined treatment algorithm the
    investigators saw significant (≥6 point) mean decreases in NIH-CPSI in all three domains (pain, urinary, quality of life). While the authors note that the NIH-CPSI was not designed as a diagnostic tool to evaluate treatment response, they do conclude
    that a step-wise, multimodal approach to therapy for long-standing CP/CPPS may be more effective than monotherapy protocols (48). A subsequent study involving the use of step-wise monotherapy strategy confirmed that patients with refractory CP/CPPS did
    show modest benefit as compared to monotherapy alone, but that the responses to this approach were still suboptimal, and instead multimodal, concurrent therapy would potentially be more appropriate (49).

    UPOINT: clinical phenotyping and targeted multimodal treatmentOther Section

    Given the multifactorial etiology of CP/CPPS and a lack of specific biomarkers available to characterize it, the practitioner and patient are more likely to benefit from a more systematic approach to classification based on phenotype. By doing so the
    variable presentation and symptom severity with which CP/CPPS presents can be taken into account. A number of large multicenter trials have failed to show significant benefit of many different treatment options as compared to placebo, which in part may
    be due to the heterogeneity of the patients classified as having CP/CPPS. In response to this dilemma, a multimodal approach to classifying urologic chronic pelvic pain [both CP/CPPS and interstitial cystitis/bladder pain syndrome (IC/BPS)] into
    qualitative clinical domains was created (50). The system, known as UPOINT, is an acronym derived from the six clinically defined areas being addressed: urinary symptoms, psychosocial dysfunction, organ-specific findings, infection, neurologic/systemic,
    and tenderness of muscles. Intentionally, each of these domains is associated with a specific approach to therapy. As a result, UPOINT confers unto the practitioner the ability to not only diagnose and classify chronic pelvic pain syndromes, but to
    develop a tailored, multi-modal treatment plan for each patient (41,51). The number of positive UPOINT domains has been shown to correlate with the NIH-CPSI in a study of 90 patients diagnosed with CP/CPPS at the Cleveland Clinic. As expected, the inter-
    individual variability in the diversity of positive domains between patients reflected the heterogeneity in symptoms. The authors also found a correlation between symptom duration and the number of positive UPOINT domains, which is consistent with the
    understanding that ongoing, unresolved inflammatory processes propagate the magnitude of the syndrome (52).

    The use of UPOINT classification to direct treatment was demonstrated in a prospective study of 100 patients with CP/CPPS seen at a single institution. Treatment was directed based on UPOINT clinical phenotyping, and treatment response was measured
    using NIH-CPSI score after a median follow-up of 50 weeks. Each UPOINT domain was interpreted as binary input, with the most common being organ-specific (positive in 70% of patients) as determined by the presence of prostatic tenderness on examination,
    leukocytosis in prostatic fluid or VB3 or hematospermia. Each UPOINT domain was assigned a specific treatment targeted to the specific symptoms characteristic of that domain. Of the 100 patients enrolled in the study, 84% achieved an improvement in NIH-
    CPSI score of 6 points or greater. Over half of patients had a greater than 50% improvement and 84% had a greater than 25% improvement. The total number of positive UPOINT domains, initial CPSI, symptom duration and number of previous therapies did not
    have statistically significant relationships with treatment response (53). A more recent retrospective observational study of 914 patients validated the use of UPOINT to direct multimodal therapy. Patients were sub-categorized patients as having
    inflammatory (NIH category IIIA) versus non-inflammatory (NIH category IIIB) CP/CPPS, clinically phenotyped according to UPOINTS (a modification of UPOINT with the addition of a sexual dysfunction domain), and compared NIH-CPSI and International Index of
    Erectile Function (IIEF) before and after treatment. A combination pharmacological treatment targeted to the urinary, organ-specific and infection domains of UPOINTS included alfuzosin and Serenoa repens (saw palmetto berry extract), the latter of which
    was administered alone or in combination with lycopene and selenium. Oral antimicrobial therapy was added for patients with culture-confirmed prostate-specific microorganisms. At a total of 18 months follow-up, 77.5% of patients saw improvements in NIH-
    CPSI of six points or greater, with improvements in both total CPSI and voiding symptoms in patients who received antibiotics over those who did not receive antibiotics regardless of whether they were initially classified as category IIIA or IIIB
    prostatitis (54).

    QuercetinOther Section

    As the scientific method is applied to what are traditionally considered “complementary and alternative” medical therapies, the discovery of potentially bioactive properties in naturally-occurring biological compounds is receiving wide spread
    recognition in the peer-reviewed literature (55-59).

    The bioflavonoid quercetin has been identified as a compound with effects on both gut microbiota composition and CP/CPPS, though the mechanism by which it exerts its effects, particularly in the latter, is not well known. In a prospective, double-blind,
    randomized placebo-controlled trial, Shoskes and colleagues investigated the use of the quercetin-containing commercial drug, Prost-Q, as a treatment option for men with category III chronic prostatitis (60). A prior study had shown that quercetin
    intake resulted in significant symptomatic improvement in 59% of men with chronic prostatitis (61). Thirty patients who met criteria for CP/CPPS and had never taken quercetin before were enrolled in the study. Half were randomized to quercetin capsules
    500 mg orally twice daily while the other half ingested an identical-appearing placebo. In the treatment arm, NIH-CPSI scores showed a mean improvement of 35% as compared to 7.2% in the placebo group. The greatest changes were seen in patients’ pain
    and quality-of-life scores, but quercetin did not appear to significantly affect the urinary score, further supporting the need to assess and treat CP/CPPS as a syndrome with a constellation of symptoms rather than by attempting to address it through
    monotherapy.

    While quercetin has previously been cited to exercise both anti-inflammatory and anti-obesity effects, the mechanism by which these properties exist is largely unknown (62,63). In vitro, quercetin has been shown to increase PTEN expression and
    downregulate the AKT pathway (64). As has been recently shown, PTEN plays a role in development of the immune system (65,66). Similarly, diet and obesity have been shown to be associated with imbalances in the gut microbiome (67,68). Owing to the fact
    that quercetin is known to be poorly absorbed in the gastrointestinal tract and the majority of the dosage reaches the colon intact (69,70), Etxeberria and colleagues postulated that oral administration of quercetin might exert some of its anti-obesity
    effects through alterations in the gut microbial ecosystem (71). The study authors induced dysbiosis of the gut microbiome by feeding Wistar rats a high-fat sucrose diet, and subsequently treating them with quercetin, trans-resveratol, or a combination
    of the two. The combination treatment group trended towards a decrease in body weight gain as compared to controls, and supplementation of either compound led to significant decreases in serum insulin levels and insulin resistance. Analysis of fecal
    matter revealed that rats treated with quercetin mitigated the increases in Firmicutes levels, which have previously been described in diet-induced rat models of obesity, and significantly decreased the Firmicutes/Bacteroidetes ratio. The expected growth
    of bacterial species associated with diet-induced obesity (Erysipelotrichaeceae, Bacillus, Eubacterium cylindroides) was also inhibited in quercetin-fed rats. Conversely, these rats also showed increases in certain bacteria (Bacteroides vulgatus,
    Akkermansia muciniphila) that have been shown to be inversely related to obesity (72). The administration of trans-resveratol did not show similar effects on the gut microbiome. The authors concluded that quercetin can significantly alter the expected
    dysbiosis of the gut microbiome, that otherwise can be induced by a high-fat “Western-style” diet (71).

    The microbiome in urologic chronic pain syndromesOther Section

    Long considered to be a sterile environment, more recent studies have shown that urinary tract harbors its own unique microbiome. Comparison of urine specimens to healthy controls have shown that the microbiota differ in varying urologic diseases,
    including urge urinary incontinence, neurogenic bladder dysfunction, and urologic chronic pain syndromes such as interstitial cystitis and chronic nonbacterial prostatitis. In addition, alterations in the normal stool microbiome have shown correlations
    with the presence of urologic diseases as with many other areas of the body that are thought to be physically distinct from the gut (73). For example, patients with renal calcium oxalate stones have been shown to have decreased Oxalobacter formigenes in
    the gut microbiome, a bacterial known to degrade dietary oxalate and thus is thought to at least be partially irresponsible for lower levels of urinary oxalate (74-76). Unfortunately a mechanistic relationship between the gut microbiome and urologic
    disease is not always so straightforward to discern.

    As discussed previously, the absence of any identifiable bacterial infection is a hallmark of CP/CPPS. The current definition relies upon the use of in vitro bacterial detection techniques facilitated by culture media optimized for the growth and
    replication of specific microorganisms. The microbiomic approach to bacterial detection instead uses a culture-independent method of isolating the 16S ribosomal RNA from existing bacteria present in the collected specimen and amplifies this genomic
    material, without relying on amplification/replication of the whole microorganism itself (77).


    [continued in next message]

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)