• Iron In Excitoneurotoxicity

    From ironjustice@21:1/5 to All on Thu Mar 15 13:00:22 2018
    Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina.
    Sakamoto K1, Suzuki T2, Takahashi K2, Koguchi T2, Hirayama T3, Mori A2, Nakahara T2, Nagasawa H3, Ishii K2.
    Exp Eye Res. 2018 Mar 9. pii: S0014-4835(17)30886-2. doi: 10.1016/j.exer.2018.03.008.
    Abstract
    Excitoneurotoxicity is regarded as one of the mechanisms of the death of retinal ganglion cells induced by retinal central artery occlusion and glaucoma. Oxidative stress is at least in part involved in excitoneurotoxicity. Fenton reaction, which is
    catalyzed by Fe2+, is known to cause formation of hydroxyl radical, one of reactive oxygen species, suggesting that chelation of iron may be protective against excitoneurotoxicity. In the present study, we histologically evaluated whether zinc-
    deferoxamine (Zn-DFO) and deferasirox (DFX), common iron-chelating agents, were protective against N-methyl-D-aspartate (NMDA)-induced retinal injury in the rat in vivo. Male Sprague-Dawley rats were subjected to intravitreal NMDA injection (200 nmol/eye)
    . Zn-DFO (1, 3, 10, and 30 mg/kg), Zn (0.1, 0.2 and 0.6 mg/kg) and DFX (20 mg/kg) were intraperitoneally administered. Morphometric evaluations using paraffin-embedded retinal sections, and detection of Fe2+ using SiRhoNox-1, a fluorescent probe of
    labile Fe2+ in the retinal frozen sections were carried out. Intravitreal NMDA resulted in strong positive signals of SiRhoNox-1 in the ganglion cell layer 24 h after NMDA injection, suggesting that intravitreal NMDA caused Fe2+ accumulation in the
    retinal ganglion cells. Intravitreal NMDA induced retinal ganglion cell loss 7 days after NMDA injection. Zn-DFO (1, 3, 10, and 30 mg/kg), ZnCl2 (0.2 mg/kg, a corresponding dose of 1 mg/kg Zn-DFO) and DFX (20 mg/kg) prevented the damage of
    retinal ganglion cells, whereas 0.6 mg/kg ZnCl2, which is a corresponding dose of 3 mg/kg Zn-DFO, did not show any protective effects. Zn-DFO (30 mg/kg) significantly decreased the intensity of the fluorescence of SiRhoNox-1 and the transferrin
    immunofluorescence 24 h after NMDA injection, the number of TUNEL-positive cells 24 h after NMDA injection, that of 8-OHdG-positive cells, and that of 4-hydroxy-2-nonenal-positive cells 12 and 24 h after NMDA injection. These data suggest that iron-
    chelating agents protected retinal neurons against excitoneurotoxicity via reduction of iron content and oxidative stress in the rats in vivo. We proposed that treatment with iron-chelating agents would be a new strategy for the retinal diseases caused
    by excitoneurotoxicity.

    KEYWORDS:
    Iron; Iron-chelating agent; N-Methyl-D-aspartic acid; Oxidative stress; Retina

    PMID: 29530811 DOI: 10.1016/j.exer.2018.03.008

    Who loves ya.
    Tom


    Jesus Was A Vegetarian!
    http://tinyurl.com/634q5a

    Man Is A Herbivore!
    http://tinyurl.com/4rq595

    DEAD PEOPLE WALKING
    http://tinyurl.com/zk9fk

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)