On Jan 14, 7:52 am, mathematician <hapor...@luukku.com> wrote:
Testing some ancient time data points with extrapolated Pannella's- näytä lainattu teksti -
fossil time data ---------------------------------------------------------------------------¬---------------------------------------------
<533c8763-511e-4ec6-a69e-8f3f1e5d1...@z6g2000pre.googlegroups.com>
sci.bio.paleontology, sci.astro, sci.geo.geology, sci.physics,
sci.math.
Sat, 13 Dec 2008, 10 pages.
(I have drawn four extrapolated figures (0-1200 Ma, days/year, 0-4600
Ma, days/year,
0-1200 Ma days/month, 0-4600 Ma, days/month) but unfortunately they
are not possible
to give here due this text is in ASCII-format. I could send them via
email by request.
My email address:
hanporop
(at)
luukku.com )
From: mathematician <haporopu@luukku.com>
Newsgroups: sci.bio.paleontology,sci.astro,sci.geo.geology,sci.physics,sci.math
Subject: Re: Testing some ancient time data points with extrapolated Pannella's fossil time data
Date: Tue, 20 Jan 2009 22:19:37 -0800 (PST)
Message-ID: <23d6c001-7a3b-4565-baba-d14d023297c5@r10g2000prf.googlegroups.com>
References: <c91312bb-c2b7-4672-8f30-dbcdf1074662@f40g2000pri.googlegroups.com>
NNTP-Posting-Date: Wed, 21 Jan 2009 06:19:37 +0000 (UTC)
Testing some ancient time data points with extrapolated Pannella's- näytä lainattu teksti -
fossil time data
---------------------------------------------------------------------------¬---------------------------------------------
<533c8763-511e-4ec6-a69e-8f3f1e5d1...@z6g2000pre.googlegroups.com>
sci.bio.paleontology, sci.astro, sci.geo.geology, sci.physics,
sci.math.
Sat, 13 Dec 2008, 10 pages.
(I have drawn four extrapolated figures (0-1200 Ma, days/year, 0-4600
Ma, days/year,
0-1200 Ma days/month, 0-4600 Ma, days/month) but unfortunately they
are not possible
to give here due this text is in ASCII-format. I could send them via
email by request.
My email address:
hanporop
(at)
luukku.com )
From: mathematician <haporopu@luukku.com>
Newsgroups: sci.bio.paleontology,sci.astro,sci.geo.geology,sci.physics,sci.math
Subject: Re: Testing some ancient time data points with extrapolated
Pannella's fossil time data
Date: Tue, 20 Jan 2009 22:19:37 -0800 (PST)
Message-ID: <23d6c001-7a3b-4565-baba-d14d023297c5@r10g2000prf.googlegroups.com>
References: <c91312bb-c2b7-4672-8f30-dbcdf1074662@f40g2000pri.googlegroups.com>
NNTP-Posting-Date: Wed, 21 Jan 2009 06:19:37 +0000 (UTC)
How to calculate with my extrapolated fossil data of Pannella G.
(Moodies Group example):
T’ = length of the month recorded by marine life (= synodic month)
t’ = length of the day recorded by marine life (= solar day)
T = length of sidereal month
t = length of sidereal day
T = T’ /(1+T’/Y)
t = t’ /(1+t’/Y), this is very nearly equal to t’
S = T’ / t’ = number of days in month recorded in paleontological specimens.
Y = length of the year (= tropical year, this is assumed to be constant = 365,2422 days = not changed significantly)
Reference:
Runcorn, S. K., 1970.
Paleontological Measurements of the Changes in the Rotation Rates of Earth and Moon and
of the Rate of Retreat of the Moon from the Earth., pages 17-23, page 21.
In:
Runcorn S.K. (Editor), 1970.
Paleogeophysics.
Academic Press Inc., Printed in Great Britain, 518 pages, pages 17-23.
*** For EXAMPLE 2 (this is extension of testing time area of my linear extrapolation to about -3225*10^4 centuries (=3225 Ma ago).
(figures are taken from my Tables and from my drawings to this
second example of Moodies Group time):
-3225*10^4 centuries (Moodies Group age is approximately 3225 Ma).
42.8 days per month (this comes from my own extrapolated fossil data figure).
650 days per year (this comes from my own extrapolated fossil data figure).
15.23 month per year (this comes from my own extrapolated fossil data figure).
13.56 hours per day (Table 4 and from my own extrapolated fossil data figure).
3215.4 Ma gives 42.44 days per month (Table 1).
3232 Ma gives 13.56 hours per day (Table 4).
T = 42.8/(1+42.8/365.2422) = 38.3 (sideric month at approx. 3225 Ma ago).
T = 42.44/(1+42.44/365.2422) = 38.02 (sideric month at approx. 3215.4 Ma ago).
t = 13.56/(1+13.56/365.2422) = 13.07 (= solar day at approx. 3232 Ma ago in present hours).
P = 38.3*13.07 h = 500.581 h = 1802091.6 s (present seconds) = 20.36 present solar days.
Approximate Earth-Moon distance at Moodies Group time approx. 3225 Ma ago:
r = 320033184.8 m = approx. 320000 km.
P = 38.0*13.07 h = 496.66 h = 1787976 s (present seconds) = 20.69 present solar days.
Approximate Earth-Moon distance at Moodies Group time approx. 3225 Ma ago:
r = 318359803.9 m = approx. 318000 km.
Comparision to the primary data from the Moodies Group (interpretations
and calculations are my own):
*** (Eriksson, K.A. and Simpson, E.L.,2004.) on page 639 Figure 7.5-3 a) would give 117-37 = 80 and this would mean 80/2 = 40 days per month
(synodic days and synodic month) at Moodies Group time.
*** (Eriksson, K.A. and Simpson, E.L.,2004.) on page 639 Figure 7.5-3 b) would give 67-23 = 44 days per month (synodic days and synodic month).
If I combine both figures it would give 40-44 days per month (synodic
days and synodic month).
These would give following figures (13.07 h is calculated from Table 4 and my drawing):
T = 40/(1+40/365.2422) = 36.05 days per month (sideric month) =
36.05*13.07 h = 471.1735 h = 1696224.6 s (present seconds) = 19.63
present solar days per sideric month.
Approx. Earth-Moon distance at Moodies Group time would be
r = (G*M*P*P/4/(Pi*Pi))Power(1/3) = 307373208.2 m = approx. 307000 km.
T = 44/(1+44/365.2422) = 39.27 days per month (sideric month) =
39.27*13.07 h = 513.2589 h = 1847732.04 s (present seconds) = 21.39
present solar days per sideric month.
Approx. Earth-Moon distance at Moodies Group time would be
r = (G*M*P^2/(4*Pi^2)) ^ (1/3) = 325414148.6 m = approx. 325000 km.
(present sideric month = 27.322 present solar days, present synodic month
= 29.531 present solar days, G = 6,67*10^(-11)*N*m^2/kg^2 , M =
5,974*10^24 kg , Pi= 3.141592654).
So at the Moodies Group time about 3225 Ma ago it seems that there could
have been 19.63-21.39 (present) solar days in the sideric month
(or rounded numbers 20-21).
So my Tables and my drawn figures for testing seems to be extendable at
least up to the Moodies Group time about 3225 Ma ago (-3225*10^4 centuries).
I don’t know how (Eriksson, K.A. and Simpson, E.L.,2004.) have achieved their result 18-20 days per month at Moodies Group time on page 638 and 641-642 because there is no explanation how these figures are achieved
from figures 7.5-3 a) and 7.5-3 b).
Some explanations are in the reference (Eriksson, Kenneth A., Simpson, Edward L., 2000).
Best Regards,
Hannu Poropudas
Kolamäentie 9E,
90900 Kiiminki / Oulu,
Finland.
References:
1. Eriksson, K.A. and Simpson, E.L.,2004.
Precambrian Tidalites: Recognition and Significance.
pp. 631-642.
In:
Eriksson, P.G., Altermann,W., Nelson, D.R., Mueller, W.U. and Catuneanu,
O., (Editors), 2004.
The Precambrian Earth: Tempos and Events.
Developments in Precambrian Geology 12,
Condie, K.C. (Series Editor).
Printed in The Netherlands. > 923 pages, pp. 631-642.
2. Eriksson, Kenneth A., Simpson, Edward L., 2000.
Quantifying the oldest tidal record: The 3.2 Ga Moodies Group, Barberton Greenstone Belt,
South Africa.
Geology, September 2000, v. 28, no. 9, pp. 831-834, 5 figures, pages 832-833.
3012,2 13,5
3021,4 13,28
3058 13,56
3058 13,48
3134,5 13,13
3232 13,56
3282,7 13,35
3282,7 13,15
3341,4 13,1
3346 13,03
3346 12,98
3373,6 12,97
3373,6 12,89
3373,6 12,75
3400,3 12,97
3414 12,64
3435,2 12,9
3441,6 12,73
3450,8 12,53
3487,4 12,79
3487,4 12,71
3563,9 12,4
3661,4 12,79
3712,1 12,59
3712,1 12,42
3770,8 12,38
3775,4 12,31
3775,4 12,26
3803 12,25
3803 12,19
3803 12,06
-------------
3829,7 12,25
3843,4 11,96
3864,6 12,2
3871 12,04
3880,2 11,87
3916,8 12,09
3916,8 12,03
3993,3 11,74
4090,8 12,09
4141,5 11,92
4141,5 11,76
4200,2 11,72
4204,8 11,66
4204,8 11,62
4232,4 11,62
4232,4 11,56
4232,4 11,44
4259,1 11,62
4272,8 11,35
4294 11,56
4300,4 11,43
4309,6 11,27
4346,2 11,47
4346,2 11,41
4422,7 11,16
4520,2 11,47
-------------
(4570,9 11,31
4570,9 11,17
4629,6 11,14
4634,2 11,08
4634,2 11,05
4661,8 11,04
4661,8 10,99
4661,8 10,88
4688,5 11,04
4702,2 10,8
4723,4 10,99
4729,8 10,87
4739 10,73
4775,6 10,91
4775,6 10,86
4852,1 10,62
4949,6 10,91)
Reference:
Poropudas, Hannu, 2009.
Some Linear Extrapolations of Pannella’s
Fossil Time Data for Test Purposes.
<533c8763-511e-4ec6-a69e-8f3f1e5d1591
(at)
z6g2000pre.googlegroups.com>
Sat, 13 Dec 2008 01:46:49 -0800 (PST).
10 pages.
(sci.bio.paleontology,sci.astro,sci.geo.geology,
sci.physics,sci.math)
(mathematician <haporopu
(at)
luukku.com>)
On Jan 14, 7:52 am, mathematician <hapor...@luukku.com> wrote:
Testing some ancient time data points with extrapolated Pannella's fossil time data ---------------------------------------------------------------------------¬---------------------------------------------- näytä lainattu teksti -
<533c8763-511e-4ec6-a69e-8f3f1e5d1...@z6g2000pre.googlegroups.com>
sci.bio.paleontology, sci.astro, sci.geo.geology, sci.physics,
sci.math.
Sat, 13 Dec 2008, 10 pages.
(I have drawn four extrapolated figures (0-1200 Ma, days/year, 0-4600 Ma, days/year,
0-1200 Ma days/month, 0-4600 Ma, days/month) but unfortunately they
are not possible
to give here due this text is in ASCII-format. I could send them via email by request.
My email address:
hanporop
(at)
luukku.com )
From: mathematician <haporopu@luukku.com>
Newsgroups: sci.bio.paleontology,sci.astro,sci.geo.geology,sci.physics,sci.math
Subject: Re: Testing some ancient time data points with extrapolated Pannella's fossil time data
Date: Tue, 20 Jan 2009 22:19:37 -0800 (PST)
Message-ID: <23d6c001-7a3b-4565-baba-d14d023297c5@r10g2000prf.googlegroups.com>
References: <c91312bb-c2b7-4672-8f30-dbcdf1074662@f40g2000pri.googlegroups.com>
NNTP-Posting-Date: Wed, 21 Jan 2009 06:19:37 +0000 (UTC)
How to calculate with my extrapolated fossil data of Pannella G.
(Moodies Group example):
T’ = length of the month recorded by marine life (= synodic month)
t’ = length of the day recorded by marine life (= solar day)
T = length of sidereal month
t = length of sidereal day
T = T’ /(1+T’/Y)
t = t’ /(1+t’/Y), this is very nearly equal to t’
S = T’ / t’ = number of days in month recorded in paleontological specimens.
Y = length of the year (= tropical year, this is assumed to be constant = 365,2422 days = not changed significantly)
Reference:
Runcorn, S. K., 1970.
Paleontological Measurements of the Changes in the Rotation Rates of Earth and Moon and
of the Rate of Retreat of the Moon from the Earth., pages 17-23, page 21. In:
Runcorn S.K. (Editor), 1970.
Paleogeophysics.
Academic Press Inc., Printed in Great Britain, 518 pages, pages 17-23.
*** For EXAMPLE 2 (this is extension of testing time area of my linear extrapolation to about -3225*10^4 centuries (=3225 Ma ago).
(figures are taken from my Tables and from my drawings to this
second example of Moodies Group time):
-3225*10^4 centuries (Moodies Group age is approximately 3225 Ma).
42.8 days per month (this comes from my own extrapolated fossil data figure).
650 days per year (this comes from my own extrapolated fossil data figure).
15.23 month per year (this comes from my own extrapolated fossil data figure).
13.56 hours per day (Table 4 and from my own extrapolated fossil data figure).
3215.4 Ma gives 42.44 days per month (Table 1).
3232 Ma gives 13.56 hours per day (Table 4).
T = 42.8/(1+42.8/365.2422) = 38.3 (sideric month at approx. 3225 Ma ago).
T = 42.44/(1+42.44/365.2422) = 38.02 (sideric month at approx. 3215.4 Ma ago).
t = 13.56/(1+13.56/365.2422) = 13.07 (= solar day at approx. 3232 Ma ago in present hours).
P = 38.3*13.07 h = 500.581 h = 1802091.6 s (present seconds) = 20.36 present solar days.
Approximate Earth-Moon distance at Moodies Group time approx. 3225 Ma ago:
r = 320033184.8 m = approx. 320000 km.
P = 38.0*13.07 h = 496.66 h = 1787976 s (present seconds) = 20.69 present solar days.
Approximate Earth-Moon distance at Moodies Group time approx. 3225 Ma ago:
r = 318359803.9 m = approx. 318000 km.
Comparision to the primary data from the Moodies Group (interpretations and calculations are my own):
*** (Eriksson, K.A. and Simpson, E.L.,2004.) on page 639 Figure 7.5-3 a) would give 117-37 = 80 and this would mean 80/2 = 40 days per month (synodic days and synodic month) at Moodies Group time.
*** (Eriksson, K.A. and Simpson, E.L.,2004.) on page 639 Figure 7.5-3 b) would give 67-23 = 44 days per month (synodic days and synodic month).
If I combine both figures it would give 40-44 days per month (synodic days and synodic month).
These would give following figures (13.07 h is calculated from Table 4 and my drawing):
T = 40/(1+40/365.2422) = 36.05 days per month (sideric month) = 36.05*13.07 h = 471.1735 h = 1696224.6 s (present seconds) = 19.63 present solar days per sideric month.
Approx. Earth-Moon distance at Moodies Group time would be
r = (G*M*P*P/4/(Pi*Pi))Power(1/3) = 307373208.2 m = approx. 307000 km.
T = 44/(1+44/365.2422) = 39.27 days per month (sideric month) = 39.27*13.07 h = 513.2589 h = 1847732.04 s (present seconds) = 21.39 present solar days per sideric month.
Approx. Earth-Moon distance at Moodies Group time would be
r = (G*M*P^2/(4*Pi^2)) ^ (1/3) = 325414148.6 m = approx. 325000 km.
(present sideric month = 27.322 present solar days, present synodic month = 29.531 present solar days, G = 6,67*10^(-11)*N*m^2/kg^2 , M = 5,974*10^24 kg , Pi= 3.141592654).
So at the Moodies Group time about 3225 Ma ago it seems that there could have been 19.63-21.39 (present) solar days in the sideric month
(or rounded numbers 20-21).
So my Tables and my drawn figures for testing seems to be extendable at least up to the Moodies Group time about 3225 Ma ago (-3225*10^4 centuries).
I don’t know how (Eriksson, K.A. and Simpson, E.L.,2004.) have achieved their result 18-20 days per month at Moodies Group time on page 638 and 641-642 because there is no explanation how these figures are achieved from figures 7.5-3 a) and 7.5-3 b).
Some explanations are in the reference (Eriksson, Kenneth A., Simpson, Edward L., 2000).
Best Regards,
Hannu Poropudas
Kolamäentie 9E,
90900 Kiiminki / Oulu,
Finland.
References:
1. Eriksson, K.A. and Simpson, E.L.,2004.
Precambrian Tidalites: Recognition and Significance.
pp. 631-642.
In:
Eriksson, P.G., Altermann,W., Nelson, D.R., Mueller, W.U. and Catuneanu, O., (Editors), 2004.
The Precambrian Earth: Tempos and Events.
Developments in Precambrian Geology 12,
Condie, K.C. (Series Editor).
Printed in The Netherlands. > 923 pages, pp. 631-642.
2. Eriksson, Kenneth A., Simpson, Edward L., 2000.
Quantifying the oldest tidal record: The 3.2 Ga Moodies Group, Barberton Greenstone Belt,
South Africa.
Geology, September 2000, v. 28, no. 9, pp. 831-834, 5 figures, pages 832-833.
which are calculated from TABLE 2 is roughly
about 0-2000 Ma.
TABLE 4
-T/10^4 Hours/Day
centuries
-----------------
0 24,03
52,2 23,63
52,2 23,39
226,2 23,63
276,9 22,98
276,9 22,41
335,6 22,27
340,2 22,05
340,2 21,91
367,8 21,88
367,8 21,67
367,8 21,26
394,5 21,88
408,2 20,97
429,4 21,69
435,8 21,21
445 20,67
481,6 21,37
481,6 21,17
558,1 20,3
655,6 21,37
706,3 20,83
706,3 20,36
765 20,24
769,6 20,06
769,6 19,95
797,2 19,92
797,2 19,75
797,2 19,41
823,9 19,92
837,6 19,16
858,8 19,77
865,2 19,37
874,4 18,92
911 19,5
911 19,33
987,5 18,61
1085 19,5
1135,7 19,05
1135,7 18,66
1194,4 18,56
1199 18,41
1199 18,31
1226,6 18,29
1226,6 18,14
1226,6 17,86
1253,3 18,29
1267 17,65
1288,2 18,16
1294,6 17,82
1303,8 17,44
1340,4 17,93
1340,4 17,79
1416,9 17,17
1514,4 17,93
1565,1 17,55
1565,1 17,21
1623,8 17,13
1628,4 17
1628,4 16,92
1656 16,9
1656 16,78
1656 16,53
1682,7 16,9
1696,4 16,35
1717,6 16,79
1724 16,5
1733,2 16,17
1769,8 16,59
1769,8 16,47
1846,3 15,95
1943,8 16,59
1994,5 16,27
1994,5 15,98
-------------
2053,2 15,91
2057,8 15,8
2057,8 15,72
2085,4 15,71
2085,4 15,6
2085,4 15,39
2112,1 15,71
2125,8 15,23
2147 15,61
2153,4 15,36
2162,6 15,08
2199,2 15,44
2199,2 15,34
2275,7 14,88
2373,2 15,44
2423,9 15,16
2423,9 14,91
2482,6 14,85
2487,2 14,75
2487,2 14,69
2514,8 14,68
2514,8 14,58
2514,8 14,4
2541,5 14,68
2555,2 14,26
2576,4 14,59
2582,8 14,37
2592 14,12
2628,6 14,44
2628,6 14,35
2705,1 13,95
2802,6 14,44
2853,3 14,2
2853,3 13,98
2912 13,92
2916,6 13,84
2916,6 13,78
2944,2 13,77
2944,2 13,69
2944,2 13,52
2970,9 13,77
2984,6 13,4
3005,8 13,69
3012,2 13,5
3021,4 13,28
3058 13,56
3058 13,48
3134,5 13,13
3232 13,56
3282,7 13,35
3282,7 13,15
3341,4 13,1
3346 13,03
3346 12,98
3373,6 12,97
3373,6 12,89
3373,6 12,75
3400,3 12,97
3414 12,64
3435,2 12,9
3441,6 12,73
3450,8 12,53
3487,4 12,79
3487,4 12,71
3563,9 12,4
3661,4 12,79
3712,1 12,59
3712,1 12,42
3770,8 12,38
3775,4 12,31
3775,4 12,26
3803 12,25
3803 12,19
3803 12,06
-------------
3829,7 12,25
3843,4 11,96
3864,6 12,2
3871 12,04
3880,2 11,87
3916,8 12,09
3916,8 12,03
3993,3 11,74
4090,8 12,09
4141,5 11,92
4141,5 11,76
4200,2 11,72
4204,8 11,66
4204,8 11,62
4232,4 11,62
4232,4 11,56
4232,4 11,44
4259,1 11,62
4272,8 11,35
4294 11,56
4300,4 11,43
4309,6 11,27
4346,2 11,47
4346,2 11,41
4422,7 11,16
4520,2 11,47
-------------
(4570,9 11,31
4570,9 11,17
4629,6 11,14
4634,2 11,08
4634,2 11,05
4661,8 11,04
4661,8 10,99
4661,8 10,88
4688,5 11,04
4702,2 10,8
4723,4 10,99
4729,8 10,87
4739 10,73
4775,6 10,91
4775,6 10,86
4852,1 10,62
4949,6 10,91)
Reference:
Poropudas, Hannu, 2009.
Some Linear Extrapolations of Pannella’s
Fossil Time Data for Test Purposes. <533c8763-511e-4ec6-a69e-8f3f1e5d1591
(at)
z6g2000pre.googlegroups.com>
Sat, 13 Dec 2008 01:46:49 -0800 (PST).
10 pages.
(sci.bio.paleontology,sci.astro,sci.geo.geology,
sci.physics,sci.math)
(mathematician <haporopu
(at)
luukku.com>)
On Jan 14, 7:52 am, mathematician <hapor...@luukku.com> wrote:
Testing some ancient time data points with extrapolated Pannella's fossil time data ---------------------------------------------------------------------------¬---------------------------------------------- näytä lainattu teksti -
<533c8763-511e-4ec6-a69e-8f3f1e5d1...@z6g2000pre.googlegroups.com>
sci.bio.paleontology, sci.astro, sci.geo.geology, sci.physics, sci.math.
Sat, 13 Dec 2008, 10 pages.
(I have drawn four extrapolated figures (0-1200 Ma, days/year, 0-4600 Ma, days/year,
0-1200 Ma days/month, 0-4600 Ma, days/month) but unfortunately they are not possible
to give here due this text is in ASCII-format. I could send them via email by request.
My email address:
hanporop
(at)
luukku.com )
From: mathematician <haporopu@luukku.com>
Newsgroups: sci.bio.paleontology,sci.astro,sci.geo.geology,sci.physics,sci.math
Subject: Re: Testing some ancient time data points with extrapolated Pannella's fossil time data
Date: Tue, 20 Jan 2009 22:19:37 -0800 (PST)
Message-ID: <23d6c001-7a3b-4565-baba-d14d023297c5@r10g2000prf.googlegroups.com>
References: <c91312bb-c2b7-4672-8f30-dbcdf1074662@f40g2000pri.googlegroups.com>
NNTP-Posting-Date: Wed, 21 Jan 2009 06:19:37 +0000 (UTC)
How to calculate with my extrapolated fossil data of Pannella G.
(Moodies Group example):
T’ = length of the month recorded by marine life (= synodic month)
t’ = length of the day recorded by marine life (= solar day)
T = length of sidereal month
t = length of sidereal day
T = T’ /(1+T’/Y)
t = t’ /(1+t’/Y), this is very nearly equal to t’
S = T’ / t’ = number of days in month recorded in paleontological specimens.
Y = length of the year (= tropical year, this is assumed to be constant = 365,2422 days = not changed significantly)
Reference:
Runcorn, S. K., 1970.
Paleontological Measurements of the Changes in the Rotation Rates of Earth and Moon and
of the Rate of Retreat of the Moon from the Earth., pages 17-23, page 21. In:
Runcorn S.K. (Editor), 1970.
Paleogeophysics.
Academic Press Inc., Printed in Great Britain, 518 pages, pages 17-23.
*** For EXAMPLE 2 (this is extension of testing time area of my linear extrapolation to about -3225*10^4 centuries (=3225 Ma ago).
(figures are taken from my Tables and from my drawings to this
second example of Moodies Group time):
-3225*10^4 centuries (Moodies Group age is approximately 3225 Ma).
42.8 days per month (this comes from my own extrapolated fossil data figure).
650 days per year (this comes from my own extrapolated fossil data figure).
15.23 month per year (this comes from my own extrapolated fossil data figure).
13.56 hours per day (Table 4 and from my own extrapolated fossil data figure).
3215.4 Ma gives 42.44 days per month (Table 1).
3232 Ma gives 13.56 hours per day (Table 4).
T = 42.8/(1+42.8/365.2422) = 38.3 (sideric month at approx. 3225 Ma ago).
T = 42.44/(1+42.44/365.2422) = 38.02 (sideric month at approx. 3215.4 Ma ago).
t = 13.56/(1+13.56/365.2422) = 13.07 (= solar day at approx. 3232 Ma ago in present hours).
P = 38.3*13.07 h = 500.581 h = 1802091.6 s (present seconds) = 20.36 present solar days.
Approximate Earth-Moon distance at Moodies Group time approx. 3225 Ma ago: r = 320033184.8 m = approx. 320000 km.
P = 38.0*13.07 h = 496.66 h = 1787976 s (present seconds) = 20.69 present solar days.
Approximate Earth-Moon distance at Moodies Group time approx. 3225 Ma ago: r = 318359803.9 m = approx. 318000 km.
Comparision to the primary data from the Moodies Group (interpretations and calculations are my own):
*** (Eriksson, K.A. and Simpson, E.L.,2004.) on page 639 Figure 7.5-3 a) would give 117-37 = 80 and this would mean 80/2 = 40 days per month (synodic days and synodic month) at Moodies Group time.
*** (Eriksson, K.A. and Simpson, E.L.,2004.) on page 639 Figure 7.5-3 b) would give 67-23 = 44 days per month (synodic days and synodic month).
If I combine both figures it would give 40-44 days per month (synodic days and synodic month).
Different types of tides (semidiurnal, mixed and diurnal types) are easily explained in couple figures of the following NOAA net page:.
https://tidesandcurrents.noaa.gov/restles4.html
Please take a look !!!
Hannu
These would give following figures (13.07 h is calculated from Table 4 and my drawing):
T = 40/(1+40/365.2422) = 36.05 days per month (sideric month) = 36.05*13.07 h = 471.1735 h = 1696224.6 s (present seconds) = 19.63 present solar days per sideric month.
Approx. Earth-Moon distance at Moodies Group time would be
r = (G*M*P*P/4/(Pi*Pi))Power(1/3) = 307373208.2 m = approx. 307000 km.
T = 44/(1+44/365.2422) = 39.27 days per month (sideric month) = 39.27*13.07 h = 513.2589 h = 1847732.04 s (present seconds) = 21.39 present solar days per sideric month.
Approx. Earth-Moon distance at Moodies Group time would be
r = (G*M*P^2/(4*Pi^2)) ^ (1/3) = 325414148.6 m = approx. 325000 km.
(present sideric month = 27.322 present solar days, present synodic month = 29.531 present solar days, G = 6,67*10^(-11)*N*m^2/kg^2 , M = 5,974*10^24 kg , Pi= 3.141592654).
So at the Moodies Group time about 3225 Ma ago it seems that there could have been 19.63-21.39 (present) solar days in the sideric month
(or rounded numbers 20-21).
So my Tables and my drawn figures for testing seems to be extendable at least up to the Moodies Group time about 3225 Ma ago (-3225*10^4 centuries).
I don’t know how (Eriksson, K.A. and Simpson, E.L.,2004.) have achieved their result 18-20 days per month at Moodies Group time on page 638 and 641-642 because there is no explanation how these figures are achieved from figures 7.5-3 a) and 7.5-3 b)
Some explanations are in the reference (Eriksson, Kenneth A., Simpson, Edward L., 2000).
Best Regards,
Hannu Poropudas
Kolamäentie 9E,
90900 Kiiminki / Oulu,
Finland.
References:
1. Eriksson, K.A. and Simpson, E.L.,2004.
Precambrian Tidalites: Recognition and Significance.
pp. 631-642.
In:
Eriksson, P.G., Altermann,W., Nelson, D.R., Mueller, W.U. and Catuneanu, O., (Editors), 2004.
The Precambrian Earth: Tempos and Events.
Developments in Precambrian Geology 12,
Condie, K.C. (Series Editor).
Printed in The Netherlands. > 923 pages, pp. 631-642.
2. Eriksson, Kenneth A., Simpson, Edward L., 2000.
Quantifying the oldest tidal record: The 3.2 Ga Moodies Group, Barberton Greenstone Belt,
South Africa.
Geology, September 2000, v. 28, no. 9, pp. 831-834, 5 figures, pages 832-833.
(Drawn extrapolated figure roughly gives approx. 650 days/year) 646.27/42.44 = 15.23 months/year
(Drawn extrapolated figures give 650/42.8 = 15.2 months/year)
3225.8 Ma, 16.82 months/year (OUM-DT2 based)
(15.2-16.8 months/year)
Reference (4).
REFERENCES:
1. Williams, G.E. 2000.
Reviews of Geophysics, 38, 1/February 2000, pages 37-59.
2. Pannella, G., 1972.
Astrophysics and Space Science, 16, (1972), 212-237.
3. Fralick,P., Davis,D.W., Kissin,S.A., 2002.
Can. J. Earth Sci., 39, 1085-1091.
4. Eriksson,K.A., Simpson,E.L., Mueller,W., 2006.
Sedimentary Geology 190 (2006), 13-24.
5. Poropudas Hannu, 2009. Some Linear Extrapolations of Pannella's Fossil Time Data for Test
Purposes. <533c8763-511e-4ec6-a69e-8f3f1e5d1591@z6g2000pre.googlegroups.com> sci.bio.paleontology, sci.astro, sci.geo.geology, sci.physics, sci.math.
Sat, 13 Dec 2008, 10 pages.
(I have drawn four extrapolated figures (0-1200 Ma, days/year, 0-4600 Ma, days/year,
0-1200 Ma days/month, 0-4600 Ma, days/month) but unfortunately they are not possible
to give here due this text is in ASCII-format. I could send them via email by request.
My email address:
hanporop
(at)
luukku.com )
From: mathematician <haporopu@luukku.com>
Newsgroups: sci.bio.paleontology,sci.astro,sci.geo.geology,sci.physics,sci.math
Subject: Testing some ancient time data points with extrapolated Pannella's
fossil time data
Date: Tue, 13 Jan 2009 21:52:20 -0800 (PST)
Message-ID: <c91312bb-c2b7-4672-8f30-dbcdf1074662@f40g2000pri.googlegroups.com>
NNTP-Posting-Date: Wed, 14 Jan 2009 05:52:20 +0000 (UTC)
Cc: george....@adelaide.edu.au
Re: Testing some ancient time data points with extrapolated
Pannella's fossil time data
Hannu Poropudas
21.1.2009
Käännä viesti kielelle: suomi
Earth's Rotational History from Linear
Extarpolation of Pannella's Ancient Time
Data of Fossils
----------------------------------------
(Author: Hannu K.J. Poropudas, Vesaisentie 9E,
90900 Kiiminki, Finland, Date: 13.1.2009)
Assumption: Distance between the Earth
and the Sun has not changed significantly
during Earth's life time (about 4550 Ma).
Main intended area of use of these figures
which are calculated from TABLE 2 is roughly
about 0-2000 Ma.
TABLE 4
-T/10^4 Hours/Day
centuries
-----------------
0 24,03
52,2 23,63
52,2 23,39
226,2 23,63
276,9 22,98
276,9 22,41
335,6 22,27
340,2 22,05
340,2 21,91
367,8 21,88
367,8 21,67
367,8 21,26
394,5 21,88
408,2 20,97
429,4 21,69
435,8 21,21
445 20,67
481,6 21,37
481,6 21,17
558,1 20,3
655,6 21,37
706,3 20,83
706,3 20,36
765 20,24
769,6 20,06
769,6 19,95
797,2 19,92
797,2 19,75
797,2 19,41
823,9 19,92
837,6 19,16
858,8 19,77
865,2 19,37
874,4 18,92
911 19,5
911 19,33
987,5 18,61
1085 19,5
1135,7 19,05
1135,7 18,66
1194,4 18,56
1199 18,41
1199 18,31
1226,6 18,29
1226,6 18,14
1226,6 17,86
1253,3 18,29
1267 17,65
1288,2 18,16
1294,6 17,82
1303,8 17,44
1340,4 17,93
1340,4 17,79
1416,9 17,17
1514,4 17,93
1565,1 17,55
1565,1 17,21
1623,8 17,13
1628,4 17
1628,4 16,92
1656 16,9
1656 16,78
1656 16,53
1682,7 16,9
1696,4 16,35
1717,6 16,79
1724 16,5
1733,2 16,17
1769,8 16,59
1769,8 16,47
1846,3 15,95
1943,8 16,59
1994,5 16,27
1994,5 15,98
-------------
2053,2 15,91
2057,8 15,8
2057,8 15,72
2085,4 15,71
2085,4 15,6
2085,4 15,39
2112,1 15,71
2125,8 15,23
2147 15,61
2153,4 15,36
2162,6 15,08
2199,2 15,44
2199,2 15,34
2275,7 14,88
2373,2 15,44
2423,9 15,16
2423,9 14,91
2482,6 14,85
2487,2 14,75
2487,2 14,69
2514,8 14,68
2514,8 14,58
2514,8 14,4
2541,5 14,68
2555,2 14,26
2576,4 14,59
2582,8 14,37
2592 14,12
2628,6 14,44
2628,6 14,35
2705,1 13,95
2802,6 14,44
2853,3 14,2
2853,3 13,98
2912 13,92
2916,6 13,84
2916,6 13,78
2944,2 13,77
2944,2 13,69
2944,2 13,52
2970,9 13,77
2984,6 13,4
3005,8 13,69
3012,2 13,5
3021,4 13,28
3058 13,56
3058 13,48
3134,5 13,13
3232 13,56
3282,7 13,35
3282,7 13,15
3341,4 13,1
3346 13,03
3346 12,98
3373,6 12,97
3373,6 12,89
3373,6 12,75
3400,3 12,97
3414 12,64
3435,2 12,9
3441,6 12,73
3450,8 12,53
3487,4 12,79
3487,4 12,71
3563,9 12,4
3661,4 12,79
3712,1 12,59
3712,1 12,42
3770,8 12,38
3775,4 12,31
3775,4 12,26
3803 12,25
3803 12,19
3803 12,06
-------------
3829,7 12,25
3843,4 11,96
3864,6 12,2
3871 12,04
3880,2 11,87
3916,8 12,09
3916,8 12,03
3993,3 11,74
4090,8 12,09
4141,5 11,92
4141,5 11,76
4200,2 11,72
4204,8 11,66
4204,8 11,62
4232,4 11,62
4232,4 11,56
4232,4 11,44
4259,1 11,62
4272,8 11,35
4294 11,56
4300,4 11,43
4309,6 11,27
4346,2 11,47
4346,2 11,41
4422,7 11,16
4520,2 11,47
-------------
(4570,9 11,31
4570,9 11,17
4629,6 11,14
4634,2 11,08
4634,2 11,05
4661,8 11,04
4661,8 10,99
4661,8 10,88
4688,5 11,04
4702,2 10,8
4723,4 10,99
4729,8 10,87
4739 10,73
4775,6 10,91
4775,6 10,86
4852,1 10,62
4949,6 10,91)
Reference:
Poropudas, Hannu, 2009.
Some Linear Extrapolations of Pannella’s
Fossil Time Data for Test Purposes. <533c8763-511e-4ec6-a69e-8f3f1e5d1591
(at)
z6g2000pre.googlegroups.com>
Sat, 13 Dec 2008 01:46:49 -0800 (PST).
10 pages.
(sci.bio.paleontology,sci.astro,sci.geo.geology,
sci.physics,sci.math)
(mathematician <haporopu
(at)
luukku.com>)
On Jan 14, 7:52 am, mathematician <hapor...@luukku.com> wrote:
Testing some ancient time data points with extrapolated Pannella's fossil time data ---------------------------------------------------------------------------¬---------------------------------------------- näytä lainattu teksti -
<533c8763-511e-4ec6-a69e-8f3f1e5d1...@z6g2000pre.googlegroups.com>
sci.bio.paleontology, sci.astro, sci.geo.geology, sci.physics, sci.math.
Sat, 13 Dec 2008, 10 pages.
(I have drawn four extrapolated figures (0-1200 Ma, days/year, 0-4600
Ma, days/year,
0-1200 Ma days/month, 0-4600 Ma, days/month) but unfortunately they are not possible
to give here due this text is in ASCII-format. I could send them via email by request.
My email address:
hanporop
(at)
luukku.com )
From: mathematician <haporopu@luukku.com>
Newsgroups: sci.bio.paleontology,sci.astro,sci.geo.geology,sci.physics,sci.math
Subject: Re: Testing some ancient time data points with extrapolated Pannella's fossil time data
Date: Tue, 20 Jan 2009 22:19:37 -0800 (PST)
Message-ID: <23d6c001-7a3b-4565-baba-d14d023297c5@r10g2000prf.googlegroups.com>
References: <c91312bb-c2b7-4672-8f30-dbcdf1074662@f40g2000pri.googlegroups.com>
NNTP-Posting-Date: Wed, 21 Jan 2009 06:19:37 +0000 (UTC)
How to calculate with my extrapolated fossil data of Pannella G. (Moodies Group example):
T’ = length of the month recorded by marine life (= synodic month) t’ = length of the day recorded by marine life (= solar day)
T = length of sidereal month
t = length of sidereal day
T = T’ /(1+T’/Y)
t = t’ /(1+t’/Y), this is very nearly equal to t’
S = T’ / t’ = number of days in month recorded in paleontological specimens.
Y = length of the year (= tropical year, this is assumed to be constant = 365,2422 days = not changed significantly)
Reference:
Runcorn, S. K., 1970.
Paleontological Measurements of the Changes in the Rotation Rates of Earth and Moon and
of the Rate of Retreat of the Moon from the Earth., pages 17-23, page 21.
In:
Runcorn S.K. (Editor), 1970.
Paleogeophysics.
Academic Press Inc., Printed in Great Britain, 518 pages, pages 17-23.
*** For EXAMPLE 2 (this is extension of testing time area of my linear extrapolation to about -3225*10^4 centuries (=3225 Ma ago).
(figures are taken from my Tables and from my drawings to this
second example of Moodies Group time):
-3225*10^4 centuries (Moodies Group age is approximately 3225 Ma).
42.8 days per month (this comes from my own extrapolated fossil data figure).
650 days per year (this comes from my own extrapolated fossil data figure).
15.23 month per year (this comes from my own extrapolated fossil data figure).
13.56 hours per day (Table 4 and from my own extrapolated fossil data figure).
3215.4 Ma gives 42.44 days per month (Table 1).
3232 Ma gives 13.56 hours per day (Table 4).
T = 42.8/(1+42.8/365.2422) = 38.3 (sideric month at approx. 3225 Ma ago).
T = 42.44/(1+42.44/365.2422) = 38.02 (sideric month at approx. 3215.4 Ma ago).
t = 13.56/(1+13.56/365.2422) = 13.07 (= solar day at approx. 3232 Ma ago in present hours).
P = 38.3*13.07 h = 500.581 h = 1802091.6 s (present seconds) = 20.36 present solar days.
Approximate Earth-Moon distance at Moodies Group time approx. 3225 Ma ago:
r = 320033184.8 m = approx. 320000 km.
P = 38.0*13.07 h = 496.66 h = 1787976 s (present seconds) = 20.69 present solar days.
Approximate Earth-Moon distance at Moodies Group time approx. 3225 Ma ago:
r = 318359803.9 m = approx. 318000 km.
Comparision to the primary data from the Moodies Group (interpretations and calculations are my own):
*** (Eriksson, K.A. and Simpson, E.L.,2004.) on page 639 Figure 7.5-3 a) would give 117-37 = 80 and this would mean 80/2 = 40 days per month (synodic days and synodic month) at Moodies Group time.
*** (Eriksson, K.A. and Simpson, E.L.,2004.) on page 639 Figure 7.5-3 b) would give 67-23 = 44 days per month (synodic days and synodic month).
If I combine both figures it would give 40-44 days per month (synodic days and synodic month).
b).Different types of tides (semidiurnal, mixed and diurnal types) are easily explained in couple figures of the following NOAA net page:
https://tidesandcurrents.noaa.gov/restles4.html
Please take a look !!!
Hannu
These would give following figures (13.07 h is calculated from Table 4 and my drawing):
T = 40/(1+40/365.2422) = 36.05 days per month (sideric month) = 36.05*13.07 h = 471.1735 h = 1696224.6 s (present seconds) = 19.63 present solar days per sideric month.
Approx. Earth-Moon distance at Moodies Group time would be
r = (G*M*P*P/4/(Pi*Pi))Power(1/3) = 307373208.2 m = approx. 307000 km.
T = 44/(1+44/365.2422) = 39.27 days per month (sideric month) = 39.27*13.07 h = 513.2589 h = 1847732.04 s (present seconds) = 21.39 present solar days per sideric month.
Approx. Earth-Moon distance at Moodies Group time would be
r = (G*M*P^2/(4*Pi^2)) ^ (1/3) = 325414148.6 m = approx. 325000 km.
(present sideric month = 27.322 present solar days, present synodic month = 29.531 present solar days, G = 6,67*10^(-11)*N*m^2/kg^2 , M = 5,974*10^24 kg , Pi= 3.141592654).
So at the Moodies Group time about 3225 Ma ago it seems that there could have been 19.63-21.39 (present) solar days in the sideric month
(or rounded numbers 20-21).
So my Tables and my drawn figures for testing seems to be extendable at least up to the Moodies Group time about 3225 Ma ago (-3225*10^4 centuries).
I don’t know how (Eriksson, K.A. and Simpson, E.L.,2004.) have achieved their result 18-20 days per month at Moodies Group time on page 638 and 641-642 because there is no explanation how these figures are achieved from figures 7.5-3 a) and 7.5-3
Some explanations are in the reference (Eriksson, Kenneth A., Simpson, Edward L., 2000).
Best Regards,
Hannu Poropudas
Kolamäentie 9E,
90900 Kiiminki / Oulu,
Finland.
References:
1. Eriksson, K.A. and Simpson, E.L.,2004.
Precambrian Tidalites: Recognition and Significance.
pp. 631-642.
In:
Eriksson, P.G., Altermann,W., Nelson, D.R., Mueller, W.U. and Catuneanu, O., (Editors), 2004.
The Precambrian Earth: Tempos and Events.
Developments in Precambrian Geology 12,
Condie, K.C. (Series Editor).
Printed in The Netherlands. > 923 pages, pp. 631-642.
2. Eriksson, Kenneth A., Simpson, Edward L., 2000.
Quantifying the oldest tidal record: The 3.2 Ga Moodies Group, Barberton Greenstone Belt,
South Africa.
Geology, September 2000, v. 28, no. 9, pp. 831-834, 5 figures, pages 832-833.
Sysop: | Keyop |
---|---|
Location: | Huddersfield, West Yorkshire, UK |
Users: | 379 |
Nodes: | 16 (2 / 14) |
Uptime: | 71:07:22 |
Calls: | 8,084 |
Calls today: | 2 |
Files: | 13,069 |
Messages: | 5,849,950 |