• Digital transistor?

    From Sylvia Else@21:1/5 to All on Sat Mar 26 10:52:34 2022
    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital
    transistor" since the charge storage time defeats any attempt to use
    them at a high frequency, and there's no way to add a Schottky diode to
    prevent saturation, or a speed-up capacitor across the base resistor.

    I'm using this and the corresponding PNP type to do level shifting of
    both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Lasse Langwadt Christensen@21:1/5 to All on Fri Mar 25 17:15:09 2022
    lørdag den 26. marts 2022 kl. 00.52.43 UTC+1 skrev Sylvia Else:
    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital transistor" since the charge storage time defeats any attempt to use
    them at a high frequency, and there's no way to add a Schottky diode to prevent saturation, or a speed-up capacitor across the base resistor.

    I'm using this and the corresponding PNP type to do level shifting of
    both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    it saves a couple of resistors, I don't think it ever promised anything else

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From John Larkin@21:1/5 to All on Fri Mar 25 17:32:39 2022
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital >transistor" since the charge storage time defeats any attempt to use
    them at a high frequency, and there's no way to add a Schottky diode to >prevent saturation, or a speed-up capacitor across the base resistor.

    I'm using this and the corresponding PNP type to do level shifting of
    both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I >wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I suppose
    some people liked not having to do the required higher-level math.

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    I bet that base resistor has a radical tempco.

    --

    If a man will begin with certainties, he shall end with doubts,
    but if he will be content to begin with doubts he shall end in certainties. Francis Bacon

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Lasse Langwadt Christensen@21:1/5 to All on Fri Mar 25 18:03:34 2022
    lørdag den 26. marts 2022 kl. 01.32.51 UTC+1 skrev John Larkin:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <syl...@email.invalid> wrote:
    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital >transistor" since the charge storage time defeats any attempt to use
    them at a high frequency, and there's no way to add a Schottky diode to >prevent saturation, or a speed-up capacitor across the base resistor.

    I'm using this and the corresponding PNP type to do level shifting of
    both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I >wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.
    The idea was to drive them from TTL without a base resistor. I suppose
    some people liked not having to do the required higher-level math.

    more like less parts and less space

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    quite few "digital transistors" here for less than half that https://lcsc.com/products/Digital-Transistors_562.html

    but also for fets
    https://lcsc.com/products/MOSFETs_381.html

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From jlarkin@highlandsniptechnology.com@21:1/5 to All on Fri Mar 25 20:40:01 2022
    On Sat, 26 Mar 2022 14:16:46 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 11:32 am, John Larkin wrote:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital
    transistor" since the charge storage time defeats any attempt to use
    them at a high frequency, and there's no way to add a Schottky diode to
    prevent saturation, or a speed-up capacitor across the base resistor.

    I'm using this and the corresponding PNP type to do level shifting of
    both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I
    wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I suppose
    some people liked not having to do the required higher-level math.

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    LTSpice shows me 0.7V of undershoot when driving it with 3V pulses, 10ns
    rise time, using Onsemi's model, and 10K load resistor.

    https://www.onsemi.com/design/resources/design-resources/models?rpn=FDV301N

    Limiting that with a Schottky diode then gives me 22 mA spikes through
    the diode.

    Taming it with a 1K gate resistor helps, at the expense of slowing the >output, but now we're back to needing an extra component.

    Not that such spikes always matter.

    Sylvia.

    10K load implies very low current, so if you want less spikes you'd
    need a part witn low Cg-d, namely a wimpier smaller-geometry device.

    An open-drain cmos gate might work, for whatever you are doing.

    Got a schematic?



    --

    I yam what I yam - Popeye

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Sylvia Else@21:1/5 to John Larkin on Sat Mar 26 14:16:46 2022
    On 26-Mar-22 11:32 am, John Larkin wrote:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital
    transistor" since the charge storage time defeats any attempt to use
    them at a high frequency, and there's no way to add a Schottky diode to
    prevent saturation, or a speed-up capacitor across the base resistor.

    I'm using this and the corresponding PNP type to do level shifting of
    both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I
    wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I suppose
    some people liked not having to do the required higher-level math.

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    LTSpice shows me 0.7V of undershoot when driving it with 3V pulses, 10ns
    rise time, using Onsemi's model, and 10K load resistor.

    https://www.onsemi.com/design/resources/design-resources/models?rpn=FDV301N

    Limiting that with a Schottky diode then gives me 22 mA spikes through
    the diode.

    Taming it with a 1K gate resistor helps, at the expense of slowing the
    output, but now we're back to needing an extra component.

    Not that such spikes always matter.

    Sylvia.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Sylvia Else@21:1/5 to jlarkin@highlandsniptechnology.com on Sat Mar 26 15:35:12 2022
    On 26-Mar-22 2:40 pm, jlarkin@highlandsniptechnology.com wrote:
    On Sat, 26 Mar 2022 14:16:46 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 11:32 am, John Larkin wrote:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital
    transistor" since the charge storage time defeats any attempt to use
    them at a high frequency, and there's no way to add a Schottky diode to >>>> prevent saturation, or a speed-up capacitor across the base resistor.

    I'm using this and the corresponding PNP type to do level shifting of
    both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I >>>> wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I suppose
    some people liked not having to do the required higher-level math.

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    LTSpice shows me 0.7V of undershoot when driving it with 3V pulses, 10ns
    rise time, using Onsemi's model, and 10K load resistor.

    https://www.onsemi.com/design/resources/design-resources/models?rpn=FDV301N >>
    Limiting that with a Schottky diode then gives me 22 mA spikes through
    the diode.

    Taming it with a 1K gate resistor helps, at the expense of slowing the
    output, but now we're back to needing an extra component.

    Not that such spikes always matter.

    Sylvia.

    10K load implies very low current, so if you want less spikes you'd
    need a part witn low Cg-d, namely a wimpier smaller-geometry device.

    An open-drain cmos gate might work, for whatever you are doing.

    Got a schematic?




    Below is my LTSpice version of the bit of the circuit concerned, to
    change levels up and down.

    The actual version implemented using the digital transistors performs
    fairly closely to the simulation. As I've said, it's sufficient for my requirements.

    I originally used a digital isolator but I've already destroyed two, one through carelessness, and one possibly through static discharge while
    trying to understand why one channel was behaving oddly. They're rather expensive to buy in excess of what is required in case they break.

    Version 4
    SHEET 1 1268 680
    WIRE 432 -752 432 -784
    WIRE 784 -752 432 -752
    WIRE 192 -704 192 -784
    WIRE 784 -672 784 -752
    WIRE 432 -656 432 -752
    WIRE 528 -656 432 -656
    WIRE 528 -608 528 -656
    WIRE -112 -592 -160 -592
    WIRE 192 -592 192 -624
    WIRE 192 -592 -112 -592
    WIRE 192 -544 192 -592
    WIRE 432 -544 432 -656
    WIRE 736 -512 640 -512
    WIRE 784 -512 784 -592
    WIRE 784 -512 736 -512
    WIRE -32 -496 -80 -496
    WIRE 80 -496 48 -496
    WIRE 128 -496 80 -496
    WIRE 528 -496 528 -528
    WIRE 528 -496 496 -496
    WIRE 560 -496 528 -496
    WIRE 640 -496 640 -512
    WIRE 80 -448 80 -496
    WIRE 432 -448 416 -448
    WIRE 80 -320 80 -368
    WIRE 80 -320 -144 -320
    WIRE 192 -320 192 -448
    WIRE 192 -320 80 -320
    WIRE -80 -272 -80 -496
    WIRE 416 -272 416 -448
    WIRE 416 -272 -80 -272
    WIRE 416 -128 352 -128
    WIRE 416 -80 416 -128
    WIRE 176 -48 176 -96
    WIRE 176 -48 -256 -48
    WIRE 352 -48 352 -128
    WIRE 352 -48 176 -48
    WIRE -256 16 -256 -48
    WIRE 416 32 416 0
    WIRE 416 32 -96 32
    WIRE 176 48 176 -48
    WIRE 176 48 64 48
    WIRE 64 80 64 48
    WIRE -240 96 -256 96
    WIRE 176 144 176 48
    WIRE 416 144 416 32
    WIRE 672 176 624 176
    WIRE 768 176 672 176
    WIRE -96 192 -96 32
    WIRE -48 192 -96 192
    WIRE 64 192 64 160
    WIRE 64 192 32 192
    WIRE 112 192 64 192
    WIRE 512 192 480 192
    WIRE 544 192 512 192
    WIRE 624 192 624 176
    WIRE 512 224 512 192
    WIRE 416 240 400 240
    WIRE -336 256 -384 256
    WIRE 176 256 176 240
    WIRE 176 256 -336 256
    WIRE 400 320 400 240
    WIRE 512 320 512 304
    WIRE 512 320 400 320
    WIRE -256 368 -256 96
    WIRE 176 368 176 336
    WIRE 176 368 -256 368
    FLAG 176 -176 0
    FLAG 400 320 0
    FLAG 768 256 0
    FLAG 192 -864 0
    FLAG -144 -320 0
    FLAG 432 -864 0
    FLAG 416 -192 0
    FLAG -112 -592 OUT1
    FLAG 736 -512 IN1
    FLAG 672 176 IN2
    FLAG -336 256 OUT2
    SYMBOL npn 480 144 M0
    SYMATTR InstName Q1
    SYMATTR Value 2N3904
    SYMBOL pnp 112 240 M180
    SYMATTR InstName Q2
    SYMATTR Value 2N3906
    SYMBOL res 496 208 R0
    SYMATTR InstName R1
    SYMATTR Value 47K
    SYMBOL res 48 64 R0
    SYMATTR InstName R2
    SYMATTR Value 47K
    SYMBOL res 48 176 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R3
    SYMATTR Value 10K
    SYMBOL res 640 176 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R4
    SYMATTR Value 10K
    SYMBOL res 160 240 R0
    SYMATTR InstName R5
    SYMATTR Value 10K
    SYMBOL voltage 176 -80 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V1
    SYMATTR Value 14
    SYMBOL voltage 768 160 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V3
    SYMATTR Value PULSE(0 3.3 0 1e-8 1e-8 2e-5 4e-5 10)
    SYMBOL voltage -256 0 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V4
    SYMATTR Value 4
    SYMBOL npn 128 -544 R0
    SYMATTR InstName Q3
    SYMATTR Value 2N3904
    SYMBOL pnp 496 -448 R180
    SYMATTR InstName Q4
    SYMATTR Value 2N3906
    SYMBOL res 512 -624 R0
    SYMATTR InstName R6
    SYMATTR Value 47K
    SYMBOL res 64 -464 R0
    SYMATTR InstName R7
    SYMATTR Value 47K
    SYMBOL res 64 -512 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName 10K
    SYMATTR Value 10K
    SYMBOL res 656 -512 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R9
    SYMATTR Value 10K
    SYMBOL voltage 192 -768 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V2
    SYMATTR Value 3.3
    SYMBOL voltage 784 -688 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V5
    SYMATTR Value PULSE(0 4 0 1e-8 1e-8 25e-6 50e-6 10)
    SYMBOL res 176 -720 R0
    SYMATTR InstName R10
    SYMATTR Value 10K
    SYMBOL voltage 432 -768 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V6
    SYMATTR Value 14
    SYMBOL res 432 -176 R180
    WINDOW 0 36 76 Left 2
    WINDOW 3 36 40 Left 2
    SYMATTR InstName R8
    SYMATTR Value 10K
    SYMBOL res 400 -96 R0
    SYMATTR InstName R11
    SYMATTR Value 10K
    TEXT -288 376 Left 2 !.tran 2E-4

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Piotr Wyderski@21:1/5 to Lasse Langwadt Christensen on Sat Mar 26 07:55:19 2022
    Lasse Langwadt Christensen wrote:

    it saves a couple of resistors, I don't think it ever promised anything else

    And they are quite useful, especially the PNP/NPN+resistors pairs in SOT-23-6/SC-70. Save a lot of board space.

    Best regards, Piotr

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From jlarkin@highlandsniptechnology.com@21:1/5 to All on Sat Mar 26 07:54:38 2022
    On Sat, 26 Mar 2022 15:35:12 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 2:40 pm, jlarkin@highlandsniptechnology.com wrote:
    On Sat, 26 Mar 2022 14:16:46 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 11:32 am, John Larkin wrote:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <sylvia@email.invalid> >>>> wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital
    transistor" since the charge storage time defeats any attempt to use >>>>> them at a high frequency, and there's no way to add a Schottky diode to >>>>> prevent saturation, or a speed-up capacitor across the base resistor. >>>>>
    I'm using this and the corresponding PNP type to do level shifting of >>>>> both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I >>>>> wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I suppose >>>> some people liked not having to do the required higher-level math.

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    LTSpice shows me 0.7V of undershoot when driving it with 3V pulses, 10ns >>> rise time, using Onsemi's model, and 10K load resistor.

    https://www.onsemi.com/design/resources/design-resources/models?rpn=FDV301N >>>
    Limiting that with a Schottky diode then gives me 22 mA spikes through
    the diode.

    Taming it with a 1K gate resistor helps, at the expense of slowing the
    output, but now we're back to needing an extra component.

    Not that such spikes always matter.

    Sylvia.

    10K load implies very low current, so if you want less spikes you'd
    need a part witn low Cg-d, namely a wimpier smaller-geometry device.

    An open-drain cmos gate might work, for whatever you are doing.

    Got a schematic?




    Below is my LTSpice version of the bit of the circuit concerned, to
    change levels up and down.

    The actual version implemented using the digital transistors performs
    fairly closely to the simulation. As I've said, it's sufficient for my >requirements.

    I originally used a digital isolator but I've already destroyed two, one >through carelessness, and one possibly through static discharge while
    trying to understand why one channel was behaving oddly. They're rather >expensive to buy in excess of what is required in case they break.

    Interesting schematic style.

    You might accomplish the same function with a dual optoisolator or a
    dual opamp.




    --

    I yam what I yam - Popeye

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From piglet@21:1/5 to jlarkin@highlandsniptechnology.com on Sat Mar 26 15:32:58 2022
    On 26/03/2022 2:54 pm, jlarkin@highlandsniptechnology.com wrote:
    On Sat, 26 Mar 2022 15:35:12 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 2:40 pm, jlarkin@highlandsniptechnology.com wrote:
    On Sat, 26 Mar 2022 14:16:46 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 11:32 am, John Larkin wrote:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <sylvia@email.invalid> >>>>> wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital >>>>>> transistor" since the charge storage time defeats any attempt to use >>>>>> them at a high frequency, and there's no way to add a Schottky diode to >>>>>> prevent saturation, or a speed-up capacitor across the base resistor. >>>>>>
    I'm using this and the corresponding PNP type to do level shifting of >>>>>> both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, but I >>>>>> wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics >>>>>> should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I suppose >>>>> some people liked not having to do the required higher-level math.

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    LTSpice shows me 0.7V of undershoot when driving it with 3V pulses, 10ns >>>> rise time, using Onsemi's model, and 10K load resistor.

    https://www.onsemi.com/design/resources/design-resources/models?rpn=FDV301N

    Limiting that with a Schottky diode then gives me 22 mA spikes through >>>> the diode.

    Taming it with a 1K gate resistor helps, at the expense of slowing the >>>> output, but now we're back to needing an extra component.

    Not that such spikes always matter.

    Sylvia.

    10K load implies very low current, so if you want less spikes you'd
    need a part witn low Cg-d, namely a wimpier smaller-geometry device.

    An open-drain cmos gate might work, for whatever you are doing.

    Got a schematic?




    Below is my LTSpice version of the bit of the circuit concerned, to
    change levels up and down.

    The actual version implemented using the digital transistors performs
    fairly closely to the simulation. As I've said, it's sufficient for my
    requirements.

    I originally used a digital isolator but I've already destroyed two, one
    through carelessness, and one possibly through static discharge while
    trying to understand why one channel was behaving oddly. They're rather
    expensive to buy in excess of what is required in case they break.

    Interesting schematic style.

    You might accomplish the same function with a dual optoisolator or a
    dual opamp.





    The sim used 50:50 square waves, if the duty cycle is not too far from
    that then the level shift could be reduced to just two capacitors or
    even pulse transformers for a 1950s vibe :)

    piglet

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From piglet@21:1/5 to Sylvia Else on Sat Mar 26 15:38:34 2022
    On 26/03/2022 4:35 am, Sylvia Else wrote:
    On 26-Mar-22 2:40 pm, jlarkin@highlandsniptechnology.com wrote:
    On Sat, 26 Mar 2022 14:16:46 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 11:32 am, John Larkin wrote:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <sylvia@email.invalid> >>>> wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital
    transistor" since the charge storage time defeats any attempt to use >>>>> them at a high frequency, and there's no way to add a Schottky
    diode to
    prevent saturation, or a speed-up capacitor across the base resistor. >>>>>
    I'm using this and the corresponding PNP type to do level shifting of >>>>> both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose,
    but I
    wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics
    should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I suppose >>>> some people liked not having to do the required higher-level math.

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    LTSpice shows me 0.7V of undershoot when driving it with 3V pulses, 10ns >>> rise time, using Onsemi's model, and 10K load resistor.

    https://www.onsemi.com/design/resources/design-resources/models?rpn=FDV301N >>>

    Limiting that with a Schottky diode then gives me 22 mA spikes through
    the diode.

    Taming it with a 1K gate resistor helps, at the expense of slowing the
    output, but now we're back to needing an extra component.

    Not that such spikes always matter.

    Sylvia.

    10K load implies very low current, so if you want less spikes you'd
    need a part witn low Cg-d, namely a wimpier smaller-geometry device.

    An open-drain cmos gate might work, for whatever you are doing.

    Got a schematic?




    Below is my LTSpice version of the bit of the circuit concerned, to
    change levels up and down.

    The actual version implemented using the digital transistors performs
    fairly closely to the simulation. As I've said, it's sufficient for my requirements.

    I originally used a digital isolator but I've already destroyed two, one through carelessness, and one possibly through static discharge while
    trying to understand why one channel was behaving oddly. They're rather expensive to buy in excess of what is required in case they break.

    Version 4
    SHEET 1 1268 680
    WIRE 432 -752 432 -784
    WIRE 784 -752 432 -752
    WIRE 192 -704 192 -784
    WIRE 784 -672 784 -752
    WIRE 432 -656 432 -752
    WIRE 528 -656 432 -656
    WIRE 528 -608 528 -656
    WIRE -112 -592 -160 -592
    WIRE 192 -592 192 -624
    WIRE 192 -592 -112 -592
    WIRE 192 -544 192 -592
    WIRE 432 -544 432 -656
    WIRE 736 -512 640 -512
    WIRE 784 -512 784 -592
    WIRE 784 -512 736 -512
    WIRE -32 -496 -80 -496
    WIRE 80 -496 48 -496
    WIRE 128 -496 80 -496
    WIRE 528 -496 528 -528
    WIRE 528 -496 496 -496
    WIRE 560 -496 528 -496
    WIRE 640 -496 640 -512
    WIRE 80 -448 80 -496
    WIRE 432 -448 416 -448
    WIRE 80 -320 80 -368
    WIRE 80 -320 -144 -320
    WIRE 192 -320 192 -448
    WIRE 192 -320 80 -320
    WIRE -80 -272 -80 -496
    WIRE 416 -272 416 -448
    WIRE 416 -272 -80 -272
    WIRE 416 -128 352 -128
    WIRE 416 -80 416 -128
    WIRE 176 -48 176 -96
    WIRE 176 -48 -256 -48
    WIRE 352 -48 352 -128
    WIRE 352 -48 176 -48
    WIRE -256 16 -256 -48
    WIRE 416 32 416 0
    WIRE 416 32 -96 32
    WIRE 176 48 176 -48
    WIRE 176 48 64 48
    WIRE 64 80 64 48
    WIRE -240 96 -256 96
    WIRE 176 144 176 48
    WIRE 416 144 416 32
    WIRE 672 176 624 176
    WIRE 768 176 672 176
    WIRE -96 192 -96 32
    WIRE -48 192 -96 192
    WIRE 64 192 64 160
    WIRE 64 192 32 192
    WIRE 112 192 64 192
    WIRE 512 192 480 192
    WIRE 544 192 512 192
    WIRE 624 192 624 176
    WIRE 512 224 512 192
    WIRE 416 240 400 240
    WIRE -336 256 -384 256
    WIRE 176 256 176 240
    WIRE 176 256 -336 256
    WIRE 400 320 400 240
    WIRE 512 320 512 304
    WIRE 512 320 400 320
    WIRE -256 368 -256 96
    WIRE 176 368 176 336
    WIRE 176 368 -256 368
    FLAG 176 -176 0
    FLAG 400 320 0
    FLAG 768 256 0
    FLAG 192 -864 0
    FLAG -144 -320 0
    FLAG 432 -864 0
    FLAG 416 -192 0
    FLAG -112 -592 OUT1
    FLAG 736 -512 IN1
    FLAG 672 176 IN2
    FLAG -336 256 OUT2
    SYMBOL npn 480 144 M0
    SYMATTR InstName Q1
    SYMATTR Value 2N3904
    SYMBOL pnp 112 240 M180
    SYMATTR InstName Q2
    SYMATTR Value 2N3906
    SYMBOL res 496 208 R0
    SYMATTR InstName R1
    SYMATTR Value 47K
    SYMBOL res 48 64 R0
    SYMATTR InstName R2
    SYMATTR Value 47K
    SYMBOL res 48 176 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R3
    SYMATTR Value 10K
    SYMBOL res 640 176 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R4
    SYMATTR Value 10K
    SYMBOL res 160 240 R0
    SYMATTR InstName R5
    SYMATTR Value 10K
    SYMBOL voltage 176 -80 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V1
    SYMATTR Value 14
    SYMBOL voltage 768 160 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V3
    SYMATTR Value PULSE(0 3.3 0 1e-8 1e-8 2e-5 4e-5 10)
    SYMBOL voltage -256 0 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V4
    SYMATTR Value 4
    SYMBOL npn 128 -544 R0
    SYMATTR InstName Q3
    SYMATTR Value 2N3904
    SYMBOL pnp 496 -448 R180
    SYMATTR InstName Q4
    SYMATTR Value 2N3906
    SYMBOL res 512 -624 R0
    SYMATTR InstName R6
    SYMATTR Value 47K
    SYMBOL res 64 -464 R0
    SYMATTR InstName R7
    SYMATTR Value 47K
    SYMBOL res 64 -512 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName 10K
    SYMATTR Value 10K
    SYMBOL res 656 -512 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R9
    SYMATTR Value 10K
    SYMBOL voltage 192 -768 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V2
    SYMATTR Value 3.3
    SYMBOL voltage 784 -688 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V5
    SYMATTR Value PULSE(0 4 0 1e-8 1e-8 25e-6 50e-6 10)
    SYMBOL res 176 -720 R0
    SYMATTR InstName R10
    SYMATTR Value 10K
    SYMBOL voltage 432 -768 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V6
    SYMATTR Value 14
    SYMBOL res 432 -176 R180
    WINDOW 0 36 76 Left 2
    WINDOW 3 36 40 Left 2
    SYMATTR InstName R8
    SYMATTR Value 10K
    SYMBOL res 400 -96 R0
    SYMATTR InstName R11
    SYMATTR Value 10K
    TEXT -288 376 Left 2 !.tran 2E-4


    You might not need R8 and R11?

    piglet

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Sylvia Else@21:1/5 to piglet on Sun Mar 27 10:49:27 2022
    On 27-Mar-22 2:38 am, piglet wrote:
    On 26/03/2022 4:35 am, Sylvia Else wrote:
    On 26-Mar-22 2:40 pm, jlarkin@highlandsniptechnology.com wrote:
    On Sat, 26 Mar 2022 14:16:46 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 11:32 am, John Larkin wrote:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else <sylvia@email.invalid> >>>>> wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital >>>>>> transistor" since the charge storage time defeats any attempt to use >>>>>> them at a high frequency, and there's no way to add a Schottky
    diode to
    prevent saturation, or a speed-up capacitor across the base resistor. >>>>>>
    I'm using this and the corresponding PNP type to do level shifting of >>>>>> both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose,
    but I
    wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics >>>>>> should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I suppose >>>>> some people liked not having to do the required higher-level math.

    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    LTSpice shows me 0.7V of undershoot when driving it with 3V pulses,
    10ns
    rise time, using Onsemi's model, and 10K load resistor.

    https://www.onsemi.com/design/resources/design-resources/models?rpn=FDV301N


    Limiting that with a Schottky diode then gives me 22 mA spikes through >>>> the diode.

    Taming it with a 1K gate resistor helps, at the expense of slowing the >>>> output, but now we're back to needing an extra component.

    Not that such spikes always matter.

    Sylvia.

    10K load implies very low current, so if you want less spikes you'd
    need a part witn low Cg-d, namely a wimpier smaller-geometry device.

    An open-drain cmos gate might work, for whatever you are doing.

    Got a schematic?




    Below is my LTSpice version of the bit of the circuit concerned, to
    change levels up and down.

    The actual version implemented using the digital transistors performs
    fairly closely to the simulation. As I've said, it's sufficient for my
    requirements.

    I originally used a digital isolator but I've already destroyed two,
    one through carelessness, and one possibly through static discharge
    while trying to understand why one channel was behaving oddly. They're
    rather expensive to buy in excess of what is required in case they break.

    Version 4
    SHEET 1 1268 680
    WIRE 432 -752 432 -784
    WIRE 784 -752 432 -752
    WIRE 192 -704 192 -784
    WIRE 784 -672 784 -752
    WIRE 432 -656 432 -752
    WIRE 528 -656 432 -656
    WIRE 528 -608 528 -656
    WIRE -112 -592 -160 -592
    WIRE 192 -592 192 -624
    WIRE 192 -592 -112 -592
    WIRE 192 -544 192 -592
    WIRE 432 -544 432 -656
    WIRE 736 -512 640 -512
    WIRE 784 -512 784 -592
    WIRE 784 -512 736 -512
    WIRE -32 -496 -80 -496
    WIRE 80 -496 48 -496
    WIRE 128 -496 80 -496
    WIRE 528 -496 528 -528
    WIRE 528 -496 496 -496
    WIRE 560 -496 528 -496
    WIRE 640 -496 640 -512
    WIRE 80 -448 80 -496
    WIRE 432 -448 416 -448
    WIRE 80 -320 80 -368
    WIRE 80 -320 -144 -320
    WIRE 192 -320 192 -448
    WIRE 192 -320 80 -320
    WIRE -80 -272 -80 -496
    WIRE 416 -272 416 -448
    WIRE 416 -272 -80 -272
    WIRE 416 -128 352 -128
    WIRE 416 -80 416 -128
    WIRE 176 -48 176 -96
    WIRE 176 -48 -256 -48
    WIRE 352 -48 352 -128
    WIRE 352 -48 176 -48
    WIRE -256 16 -256 -48
    WIRE 416 32 416 0
    WIRE 416 32 -96 32
    WIRE 176 48 176 -48
    WIRE 176 48 64 48
    WIRE 64 80 64 48
    WIRE -240 96 -256 96
    WIRE 176 144 176 48
    WIRE 416 144 416 32
    WIRE 672 176 624 176
    WIRE 768 176 672 176
    WIRE -96 192 -96 32
    WIRE -48 192 -96 192
    WIRE 64 192 64 160
    WIRE 64 192 32 192
    WIRE 112 192 64 192
    WIRE 512 192 480 192
    WIRE 544 192 512 192
    WIRE 624 192 624 176
    WIRE 512 224 512 192
    WIRE 416 240 400 240
    WIRE -336 256 -384 256
    WIRE 176 256 176 240
    WIRE 176 256 -336 256
    WIRE 400 320 400 240
    WIRE 512 320 512 304
    WIRE 512 320 400 320
    WIRE -256 368 -256 96
    WIRE 176 368 176 336
    WIRE 176 368 -256 368
    FLAG 176 -176 0
    FLAG 400 320 0
    FLAG 768 256 0
    FLAG 192 -864 0
    FLAG -144 -320 0
    FLAG 432 -864 0
    FLAG 416 -192 0
    FLAG -112 -592 OUT1
    FLAG 736 -512 IN1
    FLAG 672 176 IN2
    FLAG -336 256 OUT2
    SYMBOL npn 480 144 M0
    SYMATTR InstName Q1
    SYMATTR Value 2N3904
    SYMBOL pnp 112 240 M180
    SYMATTR InstName Q2
    SYMATTR Value 2N3906
    SYMBOL res 496 208 R0
    SYMATTR InstName R1
    SYMATTR Value 47K
    SYMBOL res 48 64 R0
    SYMATTR InstName R2
    SYMATTR Value 47K
    SYMBOL res 48 176 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R3
    SYMATTR Value 10K
    SYMBOL res 640 176 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R4
    SYMATTR Value 10K
    SYMBOL res 160 240 R0
    SYMATTR InstName R5
    SYMATTR Value 10K
    SYMBOL voltage 176 -80 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V1
    SYMATTR Value 14
    SYMBOL voltage 768 160 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V3
    SYMATTR Value PULSE(0 3.3 0 1e-8 1e-8 2e-5 4e-5 10)
    SYMBOL voltage -256 0 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V4
    SYMATTR Value 4
    SYMBOL npn 128 -544 R0
    SYMATTR InstName Q3
    SYMATTR Value 2N3904
    SYMBOL pnp 496 -448 R180
    SYMATTR InstName Q4
    SYMATTR Value 2N3906
    SYMBOL res 512 -624 R0
    SYMATTR InstName R6
    SYMATTR Value 47K
    SYMBOL res 64 -464 R0
    SYMATTR InstName R7
    SYMATTR Value 47K
    SYMBOL res 64 -512 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName 10K
    SYMATTR Value 10K
    SYMBOL res 656 -512 R90
    WINDOW 0 0 56 VBottom 2
    WINDOW 3 32 56 VTop 2
    SYMATTR InstName R9
    SYMATTR Value 10K
    SYMBOL voltage 192 -768 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V2
    SYMATTR Value 3.3
    SYMBOL voltage 784 -688 R0
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V5
    SYMATTR Value PULSE(0 4 0 1e-8 1e-8 25e-6 50e-6 10)
    SYMBOL res 176 -720 R0
    SYMATTR InstName R10
    SYMATTR Value 10K
    SYMBOL voltage 432 -768 R180
    WINDOW 0 24 96 Left 2
    WINDOW 3 24 16 Left 2
    WINDOW 123 0 0 Left 0
    WINDOW 39 0 0 Left 0
    SYMATTR InstName V6
    SYMATTR Value 14
    SYMBOL res 432 -176 R180
    WINDOW 0 36 76 Left 2
    WINDOW 3 36 40 Left 2
    SYMATTR InstName R8
    SYMATTR Value 10K
    SYMBOL res 400 -96 R0
    SYMATTR InstName R11
    SYMATTR Value 10K
    TEXT -288 376 Left 2 !.tran 2E-4


    You might not need R8 and R11?

    piglet >

    Indeed, as originally conceived there weren't there, but they speed it
    up somewhat.

    Sylvia.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Sylvia Else@21:1/5 to piglet on Sun Mar 27 12:33:54 2022
    On 27-Mar-22 2:32 am, piglet wrote:
    On 26/03/2022 2:54 pm, jlarkin@highlandsniptechnology.com wrote:
    On Sat, 26 Mar 2022 15:35:12 +1100, Sylvia Else <sylvia@email.invalid>
    wrote:

    On 26-Mar-22 2:40 pm, jlarkin@highlandsniptechnology.com wrote:
    On Sat, 26 Mar 2022 14:16:46 +1100, Sylvia Else <sylvia@email.invalid> >>>> wrote:

    On 26-Mar-22 11:32 am, John Larkin wrote:
    On Sat, 26 Mar 2022 10:52:34 +1100, Sylvia Else
    <sylvia@email.invalid>
    wrote:

    https://www.farnell.com/datasheets/2353855.pdf

    I bought a few of these. I don't know what is intended by "digital >>>>>>> transistor" since the charge storage time defeats any attempt to use >>>>>>> them at a high frequency, and there's no way to add a Schottky
    diode to
    prevent saturation, or a speed-up capacitor across the base
    resistor.

    I'm using this and the corresponding PNP type to do level
    shifting of
    both high and low levels (*). At 25 kHz it's OK, albeit with a
    significant change in duty cycle, and is adequate for my purpose, >>>>>>> but I
    wouldn't want to push it much higher.

    I suppose the lack of description of the switching characteristics >>>>>>> should have been a give-away.

    Sylvia.

    (*) Whether I needed to do that is a different discussion.

    The idea was to drive them from TTL without a base resistor. I
    suppose
    some people liked not having to do the required higher-level math. >>>>>>
    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.

    LTSpice shows me 0.7V of undershoot when driving it with 3V pulses,
    10ns
    rise time, using Onsemi's model, and 10K load resistor.

    https://www.onsemi.com/design/resources/design-resources/models?rpn=FDV301N


    Limiting that with a Schottky diode then gives me 22 mA spikes through >>>>> the diode.

    Taming it with a 1K gate resistor helps, at the expense of slowing the >>>>> output, but now we're back to needing an extra component.

    Not that such spikes always matter.

    Sylvia.

    10K load implies very low current, so if you want less spikes you'd
    need a part witn low Cg-d, namely a wimpier smaller-geometry device.

    An open-drain cmos gate might work, for whatever you are doing.

    Got a schematic?




    Below is my LTSpice version of the bit of the circuit concerned, to
    change levels up and down.

    The actual version implemented using the digital transistors performs
    fairly closely to the simulation. As I've said, it's sufficient for my
    requirements.

    I originally used a digital isolator but I've already destroyed two, one >>> through carelessness, and one possibly through static discharge while
    trying to understand why one channel was behaving oddly. They're rather
    expensive to buy in excess of what is required in case they break.

    Interesting schematic style.

    You might accomplish the same function with a dual optoisolator or a
    dual opamp.





    The sim used 50:50 square waves, if the duty cycle is not too far from
    that then the level shift could be reduced to just two capacitors or
    even pulse transformers for a 1950s vibe :)

    piglet

    I did look at a capacitive solution. But then one gets issues with overshoots/undershoots, especially during power up/down. So one adds
    diodes and resistors, and the component count goes up again.

    The solution using the digital transistors involves only four components
    per level change - two digital transistors and two additional resistors.

    Sylvia.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Tauno Voipio@21:1/5 to All on Sun Mar 27 19:52:58 2022
    T24gMjYuMy4yMiA2LjM1LCBTeWx2aWEgRWxzZSB3cm90ZToNCg0KSSB0b29rIHRoZSBsaWJl cnR5IG9mIHJlZHJhd2luZyB0aGUgc2NoZW1hdGljIGZvciBlYXNpZXINCnJlYWRpbmcgc28g dGhhdCB0aGUgc2lnbmFscyBmbG93IGxlZnQgdG8gcmlnaHQgYW5kL29yDQp0b3AgdG8gYm90 dG9tLCBhcyBJRUMgcmVjb21tZW5kcy4NCg0KVGhlIHNpbXVsYXRlZCBjaXJjdWl0IGhhcyBz cGlrZXMgaW4gdGhlIG91dHB1dCB3aGVuIHRoZQ0Kb3V0cHV0IHRyYW5zaXN0b3Igc2F0dXJh dGVzLCBwcm9iYWJseSBkdWUgdG8gdGhlIHZlcnkNCmhlYXZ5IGRyaXZlIGNvbXBhcmVkIHRv IGNvbGxlY3RvciBsb2FkLg0KDQpJbmNyZWFzaW5nIFIxMiB0byAxMDBrIGVhdHMgbW9zdCBv ZiB0aGUgc3Bpa2UuIEluIHRoZQ0Kc2FtZSB3YXkgaW5jcmVhc2luZyBSMyB0byA0NzBrIGRv ZXMgdGhlIHNhbWUuDQoNCi0tLS0gY2xpcCBjbGlwIC0tLS0NCg0KVgBlAHIAcwBpAG8AbgAg ADQADQoAUwBIAEUARQBUACAAMQAgADEAMQA4ADAAIAAxADUAOQAyAA0KAFcASQBSAEUAIAAt ADEANAA0ACAANAA4ACAALQAyADAAOAAgADQAOAANCgBXAEkAUgBFACAAOQA2ACAANAA4ACAA LQAxADQANAAgADQAOAANCgBXAEkAUgBFACAAMgA0ADAAIAA0ADgAIAA5ADYAIAA0ADgADQoA VwBJAFIARQAgADYAOAA4ACAANAA4ACAANQA5ADIAIAA0ADgADQoAVwBJAFIARQAgAC0AMQA0 ADQAIAAxADQANAAgAC0AMQA0ADQAIAA0ADgADQoAVwBJAFIARQAgADYAOAA4ACAAMQA0ADQA IAA2ADgAOAAgADQAOAANCgBXAEkAUgBFACAAOQA2ACAAMQA2ADAAIAA5ADYAIAA0ADgADQoA VwBJAFIARQAgADIANAAwACAAMgA1ADYAIAAyADQAMAAgADQAOAANCgBXAEkAUgBFACAANgA4 ADgAIAAyADgAOAAgADYAOAA4ACAAMgAyADQADQoAVwBJAFIARQAgADgAOAAwACAAMgA4ADgA IAA2ADgAOAAgADIAOAA4AA0KAFcASQBSAEUAIAAtADEANAA0ACAAMwAwADQAIAAtADEANAA0 ACAAMgAyADQADQoAVwBJAFIARQAgAC0AMQA0ADQAIAAzADAANAAgAC0AMgAwADgAIAAzADAA NAANCgBXAEkAUgBFACAALQA0ADgAIAAzADAANAAgAC0AMQA0ADQAIAAzADAANAANCgBXAEkA UgBFACAAOQA2ACAAMwAwADQAIAA5ADYAIAAyADQAMAANCgBXAEkAUgBFACAAOQA2ACAAMwAw ADQAIAAzADIAIAAzADAANAANCgBXAEkAUgBFACAAMQA3ADYAIAAzADAANAAgADkANgAgADMA MAA0AA0KAFcASQBSAEUAIAA2ADgAOAAgADMANQAyACAANgA4ADgAIAAyADgAOAANCgBXAEkA UgBFACAAMgA0ADAAIAA0ADAAMAAgADIANAAwACAAMwA1ADIADQoAVwBJAFIARQAgADMANgA4 ACAANAAwADAAIAAyADQAMAAgADQAMAAwAA0KAFcASQBSAEUAIAA1ADQANAAgADQAMAAwACAA NAA0ADgAIAA0ADAAMAANCgBXAEkAUgBFACAANgAyADQAIAA0ADAAMAAgADUANAA0ACAANAAw ADAADQoAVwBJAFIARQAgADIANAAwACAANAA0ADgAIAAyADQAMAAgADQAMAAwAA0KAFcASQBS AEUAIAA1ADQANAAgADQANgA0ACAANQA0ADQAIAA0ADAAMAANCgBXAEkAUgBFACAALQA5ADYA IAA1ADIAOAAgAC0AMQA0ADQAIAA1ADIAOAANCgBXAEkAUgBFACAAOQA2ACAANQAyADgAIAA0 ADgAIAA1ADIAOAANCgBXAEkAUgBFACAALQAxADQANAAgADUANwA2ACAALQAxADQANAAgADUA MgA4AA0KAFcASQBSAEUAIAA0ADgAIAA1ADcANgAgADQAOAAgADUAMgA4AA0KAFcASQBSAEUA IAAyADQAMAAgADUAOQAyACAAMgA0ADAAIAA1ADIAOAANCgBXAEkAUgBFACAANQA0ADQAIAA1 ADkAMgAgADUANAA0ACAANQA0ADQADQoAVwBJAFIARQAgADYAOAA4ACAANQA5ADIAIAA2ADgA OAAgADQANAA4AA0KAFcASQBSAEUAIAAtADEANAA0ACAANwAwADQAIAAtADEANAA0ACAANgA1 ADYADQoAVwBJAFIARQAgADQAOAAgADcAMAA0ACAANAA4ACAANgA1ADYADQoAVwBJAFIARQAg ADIAMgA0ACAAOAA2ADQAIAAxADQANAAgADgANgA0AA0KAFcASQBSAEUAIAA1ADYAMAAgADgA NgA0ACAAMgAyADQAIAA4ADYANAANCgBXAEkAUgBFACAANwAwADQAIAA4ADYANAAgADUANgAw ACAAOAA2ADQADQoAVwBJAFIARQAgADkAMgA4ACAAOAA2ADQAIAA3ADAANAAgADgANgA0AA0K AFcASQBSAEUAIAAyADIANAAgADkAMgA4ACAAMgAyADQAIAA4ADYANAANCgBXAEkAUgBFACAA NQA2ADAAIAA5ADIAOAAgADUANgAwACAAOAA2ADQADQoAVwBJAFIARQAgADcAMAA0ACAAMQAw ADIANAAgADcAMAA0ACAAOAA2ADQADQoAVwBJAFIARQAgADkAMgA4ACAAMQAwADIANAAgADkA MgA4ACAAOAA2ADQADQoAVwBJAFIARQAgADIAMgA0ACAAMQAwADcAMgAgADIAMgA0ACAAMQAw ADAAOAANCgBXAEkAUgBFACAAMwA4ADQAIAAxADAANwAyACAAMgAyADQAIAAxADAANwAyAA0K AFcASQBSAEUAIAA1ADYAMAAgADEAMAA3ADIAIAA1ADYAMAAgADEAMAAwADgADQoAVwBJAFIA RQAgADUANgAwACAAMQAwADcAMgAgADQANgA0ACAAMQAwADcAMgANCgBXAEkAUgBFACAANgA0 ADAAIAAxADAANwAyACAANQA2ADAAIAAxADAANwAyAA0KAFcASQBSAEUAIAAyADIANAAgADEA MQAyADAAIAAyADIANAAgADEAMAA3ADIADQoAVwBJAFIARQAgADcAMAA0ACAAMQAxADUAMgAg ADcAMAA0ACAAMQAxADIAMAANCgBXAEkAUgBFACAAMQAwADcAMgAgADEAMQA1ADIAIAA3ADAA NAAgADEAMQA1ADIADQoAVwBJAFIARQAgAC0AMQA0ADQAIAAxADEANgA4ACAALQAyADAAOAAg ADEAMQA2ADgADQoAVwBJAFIARQAgAC0ANgA0ACAAMQAxADYAOAAgAC0AMQA0ADQAIAAxADEA NgA4AA0KAFcASQBSAEUAIAA4ADAAIAAxADEANgA4ACAAMQA2ACAAMQAxADYAOAANCgBXAEkA UgBFACAAMQA2ADAAIAAxADEANgA4ACAAOAAwACAAMQAxADYAOAANCgBXAEkAUgBFACAANwAw ADQAIAAxADIAMAAwACAANwAwADQAIAAxADEANQAyAA0KAFcASQBSAEUAIAAtADEANAA0ACAA MQAyADEANgAgAC0AMQA0ADQAIAAxADEANgA4AA0KAFcASQBSAEUAIAA4ADAAIAAxADIAMwAy ACAAOAAwACAAMQAxADYAOAANCgBXAEkAUgBFACAANwAwADQAIAAxADMANAA0ACAANwAwADQA IAAxADIAOAAwAA0KAFcASQBSAEUAIAA5ADIAOAAgADEAMwA0ADQAIAA5ADIAOAAgADEAMQAw ADQADQoAVwBJAFIARQAgADkAMgA4ACAAMQAzADQANAAgADcAMAA0ACAAMQAzADQANAANCgBX AEkAUgBFACAALQAxADQANAAgADEAMwA3ADYAIAAtADEANAA0ACAAMQAyADkANgANCgBXAEkA UgBFACAAOAAwACAAMQAzADcANgAgADgAMAAgADEAMwAxADIADQoAVwBJAFIARQAgADIAMgA0 ACAAMQAzADcANgAgADIAMgA0ACAAMQAyADEANgANCgBGAEwAQQBHACAAMgA0ADAAIAA1ADkA MgAgADAADQoARgBMAEEARwAgADUANAA0ACAANQA5ADIAIAAwAA0KAEYATABBAEcAIAA2ADgA OAAgADUAOQAyACAAMAANCgBGAEwAQQBHACAAOAA4ADAAIAAyADgAOAAgAE8AVQBUADEADQoA SQBPAFAASQBOACAAOAA4ADAAIAAyADgAOAAgAE8AdQB0AA0KAEYATABBAEcAIAAtADIAMAA4 ACAAMwAwADQAIABJAE4AMQANCgBJAE8AUABJAE4AIAAtADIAMAA4ACAAMwAwADQAIABJAG4A DQoARgBMAEEARwAgAC0AMgAwADgAIAA0ADgAIAAxADQAVgANCgBJAE8AUABJAE4AIAAtADIA MAA4ACAANAA4ACAASQBuAA0KAEYATABBAEcAIAA1ADkAMgAgADQAOAAgADMALgAzAFYADQoA SQBPAFAASQBOACAANQA5ADIAIAA0ADgAIABJAG4ADQoARgBMAEEARwAgAC0AMQA0ADQAIAA3 ADAANAAgADAADQoARgBMAEEARwAgADQAOAAgADcAMAA0ACAAMAANCgBGAEwAQQBHACAALQA5 ADYAIAA1ADIAOAAgADEANABWAA0KAEkATwBQAEkATgAgAC0AOQA2ACAANQAyADgAIABPAHUA dAANCgBGAEwAQQBHACAAOQA2ACAANQAyADgAIAAzAC4AMwBWAA0KAEkATwBQAEkATgAgADkA NgAgADUAMgA4ACAATwB1AHQADQoARgBMAEEARwAgAC0AMQA0ADQAIAAxADMANwA2ACAAMAAN CgBGAEwAQQBHACAAOAAwACAAMQAzADcANgAgADAADQoARgBMAEEARwAgADIAMgA0ACAAMQAz ADcANgAgADAADQoARgBMAEEARwAgAC0AMgAwADgAIAAxADEANgA4ACAASQBOADIADQoASQBP AFAASQBOACAALQAyADAAOAAgADEAMQA2ADgAIABJAG4ADQoARgBMAEEARwAgADEAMAA3ADIA IAAxADEANQAyACAATwBVAFQAMgANCgBJAE8AUABJAE4AIAAxADAANwAyACAAMQAxADUAMgAg AE8AdQB0AA0KAEYATABBAEcAIAAxADQANAAgADgANgA0ACAAMQA0AFYADQoASQBPAFAASQBO ACAAMQA0ADQAIAA4ADYANAAgAEkAbgANCgBTAFkATQBCAE8ATAAgAHAAbgBwACAAMQA3ADYA IAAzADUAMgAgAE0AMQA4ADAADQoAUwBZAE0AQQBUAFQAUgAgAEkAbgBzAHQATgBhAG0AZQAg AFEANAANCgBTAFkATQBBAFQAVABSACAAVgBhAGwAdQBlACAAMgBOADMAOQAwADYADQoAUwBZ AE0AQgBPAEwAIAByAGUAcwAgADgAMAAgADEANAA0ACAAUgAwAA0KAFMAWQBNAEEAVABUAFIA IABJAG4AcwB0AE4AYQBtAGUAIABSADYADQoAUwBZAE0AQQBUAFQAUgAgAFYAYQBsAHUAZQAg ADQANwBrAA0KAFMAWQBNAEIATwBMACAAcgBlAHMAIAA0ADgAIAAyADgAOAAgAFIAOQAwAA0K AFcASQBOAEQATwBXACAAMAAgADAAIAA1ADYAIABWAEIAbwB0AHQAbwBtACAAMgANCgBXAEkA TgBEAE8AVwAgADMAIAAzADIAIAA1ADYAIABWAFQAbwBwACAAMgANCgBTAFkATQBBAFQAVABS ACAASQBuAHMAdABOAGEAbQBlACAAUgA5AA0KAFMAWQBNAEEAVABUAFIAIABWAGEAbAB1AGUA IAAxADAAawANCgBTAFkATQBCAE8ATAAgAHAAbgBwACAANgA0ADAAIAAxADEAMgAwACAATQAx ADgAMAANCgBTAFkATQBBAFQAVABSACAASQBuAHMAdABOAGEAbQBlACAAUQAyAA0KAFMAWQBN AEEAVABUAFIAIABWAGEAbAB1AGUAIAAyAE4AMwA5ADAANgANCgBTAFkATQBCAE8ATAAgAHIA ZQBzACAANQA0ADQAIAA5ADEAMgAgAFIAMAANCgBTAFkATQBBAFQAVABSACAASQBuAHMAdABO AGEAbQBlACAAUgAyAA0KAFMAWQBNAEEAVABUAFIAIABWAGEAbAB1AGUAIAA0ADcAawANCgBT AFkATQBCAE8ATAAgAHIAZQBzACAANAA4ADAAIAAxADAANQA2ACAAUgA5ADAADQoAVwBJAE4A RABPAFcAIAAwACAAMAAgADUANgAgAFYAQgBvAHQAdABvAG0AIAAyAA0KAFcASQBOAEQATwBX ACAAMwAgADMAMgAgADUANgAgAFYAVABvAHAAIAAyAA0KAFMAWQBNAEEAVABUAFIAIABJAG4A cwB0AE4AYQBtAGUAIABSADMADQoAUwBZAE0AQQBUAFQAUgAgAFYAYQBsAHUAZQAgADEAMABr AA0KAFMAWQBNAEIATwBMACAAcgBlAHMAIAA1ADIAOAAgADUANgAwACAATQAxADgAMAANCgBX AEkATgBEAE8AVwAgADAAIAAzADYAIAA3ADYAIABMAGUAZgB0ACAAMgANCgBXAEkATgBEAE8A VwAgADMAIAAzADYAIAA0ADAAIABMAGUAZgB0ACAAMgANCgBTAFkATQBBAFQAVABSACAASQBu AHMAdABOAGEAbQBlACAAUgA3AA0KAFMAWQBNAEEAVABUAFIAIABWAGEAbAB1AGUAIAA0ADcA awANCgBTAFkATQBCAE8ATAAgAHIAZQBzACAANAA2ADQAIAA0ADEANgAgAE0AMgA3ADAADQoA VwBJAE4ARABPAFcAIAAwACAAMwAyACAANQA2ACAAVgBUAG8AcAAgADIADQoAVwBJAE4ARABP AFcAIAAzACAAMAAgADUANgAgAFYAQgBvAHQAdABvAG0AIAAyAA0KAFMAWQBNAEEAVABUAFIA IABJAG4AcwB0AE4AYQBtAGUAIABSADEAMgANCgBTAFkATQBBAFQAVABSACAAVgBhAGwAdQBl ACAAMQAwAGsADQoAUwBZAE0AQgBPAEwAIABuAHAAbgAgADYAMgA0ACAAMwA1ADIAIABSADAA DQoAUwBZAE0AQQBUAFQAUgAgAEkAbgBzAHQATgBhAG0AZQAgAFEAMwANCgBTAFkATQBBAFQA VABSACAAVgBhAGwAdQBlACAAMgBOADMAOQAwADQADQoAUwBZAE0AQgBPAEwAIAByAGUAcwAg ADYANAAgADEAMwAyADgAIABNADEAOAAwAA0KAFcASQBOAEQATwBXACAAMAAgADMANgAgADcA NgAgAEwAZQBmAHQAIAAyAA0KAFcASQBOAEQATwBXACAAMwAgADMANgAgADQAMAAgAEwAZQBm AHQAIAAyAA0KAFMAWQBNAEEAVABUAFIAIABJAG4AcwB0AE4AYQBtAGUAIABSADEADQoAUwBZ AE0AQQBUAFQAUgAgAFYAYQBsAHUAZQAgADQANwBrAA0KAFMAWQBNAEIATwBMACAAcgBlAHMA IAAzADIAIAAxADEAOAA0ACAATQAyADcAMAANCgBXAEkATgBEAE8AVwAgADAAIAAzADIAIAA1 ADYAIABWAFQAbwBwACAAMgANCgBXAEkATgBEAE8AVwAgADMAIAAwACAANQA2ACAAVgBCAG8A dAB0AG8AbQAgADIADQoAUwBZAE0AQQBUAFQAUgAgAEkAbgBzAHQATgBhAG0AZQAgAFIANAAN CgBTAFkATQBBAFQAVABSACAAVgBhAGwAdQBlACAAMQAwAGsADQoAUwBZAE0AQgBPAEwAIABu AHAAbgAgADEANgAwACAAMQAxADIAMAAgAFIAMAANCgBTAFkATQBBAFQAVABSACAASQBuAHMA dABOAGEAbQBlACAAUQAxAA0KAFMAWQBNAEEAVABUAFIAIABWAGEAbAB1AGUAIAAyAE4AMwA5 ADAANAANCgBTAFkATQBCAE8ATAAgAHIAZQBzACAAMgAyADQAIAA0ADMAMgAgAFIAMAANCgBT AFkATQBBAFQAVABSACAASQBuAHMAdABOAGEAbQBlACAAUgA4AA0KAFMAWQBNAEEAVABUAFIA IABWAGEAbAB1AGUAIAAxADAAawANCgBTAFkATQBCAE8ATAAgAHIAZQBzACAANgA3ADIAIAAx ADIAOAAgAFIAMAANCgBTAFkATQBBAFQAVABSACAASQBuAHMAdABOAGEAbQBlACAAUgAxADAA DQoAUwBZAE0AQQBUAFQAUgAgAFYAYQBsAHUAZQAgADEAMABrAA0KAFMAWQBNAEIATwBMACAA dgBvAGwAdABhAGcAZQAgAC0AMQA0ADQAIAAxADIAOAAgAFIAMAANCgBXAEkATgBEAE8AVwAg ADMAIAAtADYANQAgADIANAA3ACAATABlAGYAdAAgADIADQoAUwBZAE0AQQBUAFQAUgAgAEkA bgBzAHQATgBhAG0AZQAgAFYANQANCgBTAFkATQBBAFQAVABSACAAVgBhAGwAdQBlACAAUABV AEwAUwBFACgAMAAgADQAIAAwACAAMQBlAC0AOAAgADEAZQAtADgAIAAyADUAZQAtADYAIAA1 ADAAZQAtADYAIAAxADAAKQANCgBTAFkATQBCAE8ATAAgAHYAbwBsAHQAYQBnAGUAIAAtADEA NAA0ACAANQA2ADAAIABSADAADQoAUwBZAE0AQQBUAFQAUgAgAEkAbgBzAHQATgBhAG0AZQAg AFYAMQANCgBTAFkATQBBAFQAVABSACAAVgBhAGwAdQBlACAAMQA0AA0KAFMAWQBNAEIATwBM ACAAdgBvAGwAdABhAGcAZQAgADQAOAAgADUANgAwACAAUgAwAA0KAFMAWQBNAEEAVABUAFIA IABJAG4AcwB0AE4AYQBtAGUAIABWADIADQoAUwBZAE0AQQBUAFQAUgAgAFYAYQBsAHUAZQAg ADMALgAzAA0KAFMAWQBNAEIATwBMACAAcgBlAHMAIAAyADAAOAAgADkAMQAyACAAUgAwAA0K AFMAWQBNAEEAVABUAFIAIABJAG4AcwB0AE4AYQBtAGUAIABSADEAMQANCgBTAFkATQBBAFQA VABSACAAVgBhAGwAdQBlACAAMQAwAGsADQoAUwBZAE0AQgBPAEwAIAByAGUAcwAgADYAOAA4 ACAAMQAxADgANAAgAFIAMAANCgBTAFkATQBBAFQAVABSACAASQBuAHMAdABOAGEAbQBlACAA UgA1AA0KAFMAWQBNAEEAVABUAFIAIABWAGEAbAB1AGUAIAAxADAAawANCgBTAFkATQBCAE8A TAAgAHYAbwBsAHQAYQBnAGUAIAA5ADIAOAAgADEAMAAwADgAIABSADAADQoAUwBZAE0AQQBU AFQAUgAgAEkAbgBzAHQATgBhAG0AZQAgAFYANAANCgBTAFkATQBBAFQAVABSACAAVgBhAGwA dQBlACAANAANCgBTAFkATQBCAE8ATAAgAHYAbwBsAHQAYQBnAGUAIAAtADEANAA0ACAAMQAy ADAAMAAgAFIAMAANCgBXAEkATgBEAE8AVwAgADMAIAAtADcANQAgADIAMgA3ACAATABlAGYA dAAgADIADQoAUwBZAE0AQQBUAFQAUgAgAEkAbgBzAHQATgBhAG0AZQAgAFYAMwANCgBTAFkA TQBBAFQAVABSACAAVgBhAGwAdQBlACAAUABVAEwAUwBFACgAMAAgADMALgAzACAAMAAgADEA ZQAtADgAIAAxAGUALQA4ACAAMgBlAC0ANQAgADQAZQAtADUAIAAxADAAKQANCgBUAEUAWABU ACAALQAxADgANAAgADkANAA0ACAATABlAGYAdAAgADIAIAAhAC4AdAByAGEAbgAgADIAZQAt ADQADQoADQoNCi0tLS0gY2xpcCBjbGlwIC0tLS0NCi0tIA0KDQotVFYNCg0KPiANCj4gQmVs b3cgaXMgbXkgTFRTcGljZSB2ZXJzaW9uIG9mIHRoZSBiaXQgb2YgdGhlIGNpcmN1aXQgY29u Y2VybmVkLCB0byANCj4gY2hhbmdlIGxldmVscyB1cCBhbmQgZG93bi4NCj4gDQo+IFRoZSBh Y3R1YWwgdmVyc2lvbiBpbXBsZW1lbnRlZCB1c2luZyB0aGUgZGlnaXRhbCB0cmFuc2lzdG9y cyBwZXJmb3JtcyANCj4gZmFpcmx5IGNsb3NlbHkgdG8gdGhlIHNpbXVsYXRpb24uIEFzIEkn dmUgc2FpZCwgaXQncyBzdWZmaWNpZW50IGZvciBteSANCj4gcmVxdWlyZW1lbnRzLg0KPiAN Cj4gSSBvcmlnaW5hbGx5IHVzZWQgYSBkaWdpdGFsIGlzb2xhdG9yIGJ1dCBJJ3ZlIGFscmVh ZHkgZGVzdHJveWVkIHR3bywgb25lIA0KPiB0aHJvdWdoIGNhcmVsZXNzbmVzcywgYW5kIG9u ZSBwb3NzaWJseSB0aHJvdWdoIHN0YXRpYyBkaXNjaGFyZ2Ugd2hpbGUgDQo+IHRyeWluZyB0 byB1bmRlcnN0YW5kIHdoeSBvbmUgY2hhbm5lbCB3YXMgYmVoYXZpbmcgb2RkbHkuIFRoZXkn cmUgcmF0aGVyIA0KPiBleHBlbnNpdmUgdG8gYnV5IGluIGV4Y2VzcyBvZiB3aGF0IGlzIHJl cXVpcmVkIGluIGNhc2UgdGhleSBicmVhay4NCj4gDQo+IFZlcnNpb24gNA0KPiBTSEVFVCAx IDEyNjggNjgwDQo+IFdJUkUgNDMyIC03NTIgNDMyIC03ODQNCj4gV0lSRSA3ODQgLTc1MiA0 MzIgLTc1Mg0KPiBXSVJFIDE5MiAtNzA0IDE5MiAtNzg0DQo+IFdJUkUgNzg0IC02NzIgNzg0 IC03NTINCj4gV0lSRSA0MzIgLTY1NiA0MzIgLTc1Mg0KPiBXSVJFIDUyOCAtNjU2IDQzMiAt NjU2DQo+IFdJUkUgNTI4IC02MDggNTI4IC02NTYNCj4gV0lSRSAtMTEyIC01OTIgLTE2MCAt NTkyDQo+IFdJUkUgMTkyIC01OTIgMTkyIC02MjQNCj4gV0lSRSAxOTIgLTU5MiAtMTEyIC01 OTINCj4gV0lSRSAxOTIgLTU0NCAxOTIgLTU5Mg0KPiBXSVJFIDQzMiAtNTQ0IDQzMiAtNjU2 DQo+IFdJUkUgNzM2IC01MTIgNjQwIC01MTINCj4gV0lSRSA3ODQgLTUxMiA3ODQgLTU5Mg0K PiBXSVJFIDc4NCAtNTEyIDczNiAtNTEyDQo+IFdJUkUgLTMyIC00OTYgLTgwIC00OTYNCj4g V0lSRSA4MCAtNDk2IDQ4IC00OTYNCj4gV0lSRSAxMjggLTQ5NiA4MCAtNDk2DQo+IFdJUkUg NTI4IC00OTYgNTI4IC01MjgNCj4gV0lSRSA1MjggLTQ5NiA0OTYgLTQ5Ng0KPiBXSVJFIDU2 MCAtNDk2IDUyOCAtNDk2DQo+IFdJUkUgNjQwIC00OTYgNjQwIC01MTINCj4gV0lSRSA4MCAt NDQ4IDgwIC00OTYNCj4gV0lSRSA0MzIgLTQ0OCA0MTYgLTQ0OA0KPiBXSVJFIDgwIC0zMjAg ODAgLTM2OA0KPiBXSVJFIDgwIC0zMjAgLTE0NCAtMzIwDQo+IFdJUkUgMTkyIC0zMjAgMTky IC00NDgNCj4gV0lSRSAxOTIgLTMyMCA4MCAtMzIwDQo+IFdJUkUgLTgwIC0yNzIgLTgwIC00 OTYNCj4gV0lSRSA0MTYgLTI3MiA0MTYgLTQ0OA0KPiBXSVJFIDQxNiAtMjcyIC04MCAtMjcy DQo+IFdJUkUgNDE2IC0xMjggMzUyIC0xMjgNCj4gV0lSRSA0MTYgLTgwIDQxNiAtMTI4DQo+ IFdJUkUgMTc2IC00OCAxNzYgLTk2DQo+IFdJUkUgMTc2IC00OCAtMjU2IC00OA0KPiBXSVJF IDM1MiAtNDggMzUyIC0xMjgNCj4gV0lSRSAzNTIgLTQ4IDE3NiAtNDgNCj4gV0lSRSAtMjU2 IDE2IC0yNTYgLTQ4DQo+IFdJUkUgNDE2IDMyIDQxNiAwDQo+IFdJUkUgNDE2IDMyIC05NiAz Mg0KPiBXSVJFIDE3NiA0OCAxNzYgLTQ4DQo+IFdJUkUgMTc2IDQ4IDY0IDQ4DQo+IFdJUkUg NjQgODAgNjQgNDgNCj4gV0lSRSAtMjQwIDk2IC0yNTYgOTYNCj4gV0lSRSAxNzYgMTQ0IDE3 NiA0OA0KPiBXSVJFIDQxNiAxNDQgNDE2IDMyDQo+IFdJUkUgNjcyIDE3NiA2MjQgMTc2DQo+ IFdJUkUgNzY4IDE3NiA2NzIgMTc2DQo+IFdJUkUgLTk2IDE5MiAtOTYgMzINCj4gV0lSRSAt NDggMTkyIC05NiAxOTINCj4gV0lSRSA2NCAxOTIgNjQgMTYwDQo+IFdJUkUgNjQgMTkyIDMy IDE5Mg0KPiBXSVJFIDExMiAxOTIgNjQgMTkyDQo+IFdJUkUgNTEyIDE5MiA0ODAgMTkyDQo+ IFdJUkUgNTQ0IDE5MiA1MTIgMTkyDQo+IFdJUkUgNjI0IDE5MiA2MjQgMTc2DQo+IFdJUkUg NTEyIDIyNCA1MTIgMTkyDQo+IFdJUkUgNDE2IDI0MCA0MDAgMjQwDQo+IFdJUkUgLTMzNiAy NTYgLTM4NCAyNTYNCj4gV0lSRSAxNzYgMjU2IDE3NiAyNDANCj4gV0lSRSAxNzYgMjU2IC0z MzYgMjU2DQo+IFdJUkUgNDAwIDMyMCA0MDAgMjQwDQo+IFdJUkUgNTEyIDMyMCA1MTIgMzA0 DQo+IFdJUkUgNTEyIDMyMCA0MDAgMzIwDQo+IFdJUkUgLTI1NiAzNjggLTI1NiA5Ng0KPiBX SVJFIDE3NiAzNjggMTc2IDMzNg0KPiBXSVJFIDE3NiAzNjggLTI1NiAzNjgNCj4gRkxBRyAx NzYgLTE3NiAwDQo+IEZMQUcgNDAwIDMyMCAwDQo+IEZMQUcgNzY4IDI1NiAwDQo+IEZMQUcg MTkyIC04NjQgMA0KPiBGTEFHIC0xNDQgLTMyMCAwDQo+IEZMQUcgNDMyIC04NjQgMA0KPiBG TEFHIDQxNiAtMTkyIDANCj4gRkxBRyAtMTEyIC01OTIgT1VUMQ0KPiBGTEFHIDczNiAtNTEy IElOMQ0KPiBGTEFHIDY3MiAxNzYgSU4yDQo+IEZMQUcgLTMzNiAyNTYgT1VUMg0KPiBTWU1C T0wgbnBuIDQ4MCAxNDQgTTANCj4gU1lNQVRUUiBJbnN0TmFtZSBRMQ0KPiBTWU1BVFRSIFZh bHVlIDJOMzkwNA0KPiBTWU1CT0wgcG5wIDExMiAyNDAgTTE4MA0KPiBTWU1BVFRSIEluc3RO YW1lIFEyDQo+IFNZTUFUVFIgVmFsdWUgMk4zOTA2DQo+IFNZTUJPTCByZXMgNDk2IDIwOCBS MA0KPiBTWU1BVFRSIEluc3ROYW1lIFIxDQo+IFNZTUFUVFIgVmFsdWUgNDdLDQo+IFNZTUJP TCByZXMgNDggNjQgUjANCj4gU1lNQVRUUiBJbnN0TmFtZSBSMg0KPiBTWU1BVFRSIFZhbHVl IDQ3Sw0KPiBTWU1CT0wgcmVzIDQ4IDE3NiBSOTANCj4gV0lORE9XIDAgMCA1NiBWQm90dG9t IDINCj4gV0lORE9XIDMgMzIgNTYgVlRvcCAyDQo+IFNZTUFUVFIgSW5zdE5hbWUgUjMNCj4g U1lNQVRUUiBWYWx1ZSAxMEsNCj4gU1lNQk9MIHJlcyA2NDAgMTc2IFI5MA0KPiBXSU5ET1cg MCAwIDU2IFZCb3R0b20gMg0KPiBXSU5ET1cgMyAzMiA1NiBWVG9wIDINCj4gU1lNQVRUUiBJ bnN0TmFtZSBSNA0KPiBTWU1BVFRSIFZhbHVlIDEwSw0KPiBTWU1CT0wgcmVzIDE2MCAyNDAg UjANCj4gU1lNQVRUUiBJbnN0TmFtZSBSNQ0KPiBTWU1BVFRSIFZhbHVlIDEwSw0KPiBTWU1C T0wgdm9sdGFnZSAxNzYgLTgwIFIxODANCj4gV0lORE9XIDAgMjQgOTYgTGVmdCAyDQo+IFdJ TkRPVyAzIDI0IDE2IExlZnQgMg0KPiBXSU5ET1cgMTIzIDAgMCBMZWZ0IDANCj4gV0lORE9X IDM5IDAgMCBMZWZ0IDANCj4gU1lNQVRUUiBJbnN0TmFtZSBWMQ0KPiBTWU1BVFRSIFZhbHVl IDE0DQo+IFNZTUJPTCB2b2x0YWdlIDc2OCAxNjAgUjANCj4gV0lORE9XIDEyMyAwIDAgTGVm dCAwDQo+IFdJTkRPVyAzOSAwIDAgTGVmdCAwDQo+IFNZTUFUVFIgSW5zdE5hbWUgVjMNCj4g U1lNQVRUUiBWYWx1ZSBQVUxTRSgwIDMuMyAwIDFlLTggMWUtOCAyZS01IDRlLTUgMTApDQo+ IFNZTUJPTCB2b2x0YWdlIC0yNTYgMCBSMA0KPiBXSU5ET1cgMTIzIDAgMCBMZWZ0IDANCj4g V0lORE9XIDM5IDAgMCBMZWZ0IDANCj4gU1lNQVRUUiBJbnN0TmFtZSBWNA0KPiBTWU1BVFRS IFZhbHVlIDQNCj4gU1lNQk9MIG5wbiAxMjggLTU0NCBSMA0KPiBTWU1BVFRSIEluc3ROYW1l IFEzDQo+IFNZTUFUVFIgVmFsdWUgMk4zOTA0DQo+IFNZTUJPTCBwbnAgNDk2IC00NDggUjE4 MA0KPiBTWU1BVFRSIEluc3ROYW1lIFE0DQo+IFNZTUFUVFIgVmFsdWUgMk4zOTA2DQo+IFNZ TUJPTCByZXMgNTEyIC02MjQgUjANCj4gU1lNQVRUUiBJbnN0TmFtZSBSNg0KPiBTWU1BVFRS IFZhbHVlIDQ3Sw0KPiBTWU1CT0wgcmVzIDY0IC00NjQgUjANCj4gU1lNQVRUUiBJbnN0TmFt ZSBSNw0KPiBTWU1BVFRSIFZhbHVlIDQ3Sw0KPiBTWU1CT0wgcmVzIDY0IC01MTIgUjkwDQo+ IFdJTkRPVyAwIDAgNTYgVkJvdHRvbSAyDQo+IFdJTkRPVyAzIDMyIDU2IFZUb3AgMg0KPiBT WU1BVFRSIEluc3ROYW1lIDEwSw0KPiBTWU1BVFRSIFZhbHVlIDEwSw0KPiBTWU1CT0wgcmVz IDY1NiAtNTEyIFI5MA0KPiBXSU5ET1cgMCAwIDU2IFZCb3R0b20gMg0KPiBXSU5ET1cgMyAz MiA1NiBWVG9wIDINCj4gU1lNQVRUUiBJbnN0TmFtZSBSOQ0KPiBTWU1BVFRSIFZhbHVlIDEw Sw0KPiBTWU1CT0wgdm9sdGFnZSAxOTIgLTc2OCBSMTgwDQo+IFdJTkRPVyAwIDI0IDk2IExl ZnQgMg0KPiBXSU5ET1cgMyAyNCAxNiBMZWZ0IDINCj4gV0lORE9XIDEyMyAwIDAgTGVmdCAw DQo+IFdJTkRPVyAzOSAwIDAgTGVmdCAwDQo+IFNZTUFUVFIgSW5zdE5hbWUgVjINCj4gU1lN QVRUUiBWYWx1ZSAzLjMNCj4gU1lNQk9MIHZvbHRhZ2UgNzg0IC02ODggUjANCj4gV0lORE9X IDEyMyAwIDAgTGVmdCAwDQo+IFdJTkRPVyAzOSAwIDAgTGVmdCAwDQo+IFNZTUFUVFIgSW5z dE5hbWUgVjUNCj4gU1lNQVRUUiBWYWx1ZSBQVUxTRSgwIDQgMCAxZS04IDFlLTggMjVlLTYg NTBlLTYgMTApDQo+IFNZTUJPTCByZXMgMTc2IC03MjAgUjANCj4gU1lNQVRUUiBJbnN0TmFt ZSBSMTANCj4gU1lNQVRUUiBWYWx1ZSAxMEsNCj4gU1lNQk9MIHZvbHRhZ2UgNDMyIC03Njgg UjE4MA0KPiBXSU5ET1cgMCAyNCA5NiBMZWZ0IDINCj4gV0lORE9XIDMgMjQgMTYgTGVmdCAy DQo+IFdJTkRPVyAxMjMgMCAwIExlZnQgMA0KPiBXSU5ET1cgMzkgMCAwIExlZnQgMA0KPiBT WU1BVFRSIEluc3ROYW1lIFY2DQo+IFNZTUFUVFIgVmFsdWUgMTQNCj4gU1lNQk9MIHJlcyA0 MzIgLTE3NiBSMTgwDQo+IFdJTkRPVyAwIDM2IDc2IExlZnQgMg0KPiBXSU5ET1cgMyAzNiA0 MCBMZWZ0IDINCj4gU1lNQVRUUiBJbnN0TmFtZSBSOA0KPiBTWU1BVFRSIFZhbHVlIDEwSw0K PiBTWU1CT0wgcmVzIDQwMCAtOTYgUjANCj4gU1lNQVRUUiBJbnN0TmFtZSBSMTENCj4gU1lN QVRUUiBWYWx1ZSAxMEsNCj4gVEVYVCAtMjg4IDM3NiBMZWZ0IDIgIS50cmFuIDJFLTQNCj4g DQoNCg==

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Uwe Bonnes@21:1/5 to John Larkin on Sun Mar 27 20:05:55 2022
    John Larkin <jlarkin@highland_atwork_technology.com> wrote:
    ...
    Logic-level mosfets made these mostly obsolete. FDV301 costs us 3
    cents.
    For interfacing woth uCs, the bipolar digital transisors are
    guaranteed off while a MOSFET requires a pulldown while the UC boots

    --
    Uwe Bonnes bon@elektron.ikp.physik.tu-darmstadt.de

    Institut fuer Kernphysik Schlossgartenstrasse 9 64289 Darmstadt
    --------- Tel. 06151 1623569 ------- Fax. 06151 1623305 ---------

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)