• (3,4,5) (5,12,13) ... i can ask HAL to give me more Pythagorean triples

    From henhanna@gmail.com@21:1/5 to All on Sat Jun 18 11:56:12 2022
    (3,4,5) (5,12,13) ...

    i can ask HAL to give me 10 more or 100 more
    Pythagorean triples, but ... writing a program to search for them
    is rather hard to do... (i didn't even attempt it)


    https://math.stackexchange.com/questions/1386029/are-there-infinitely-many-pythagorean-triples


    For all X, Y, and Z in the range 0-1000 and none equal to the
    other two, I found no solutions.



    Fibonacci numbers in Pythagorean triples -------
    (3,4,5), (5,12,13), (16,30,34), (39,80,89), ... The middle side of each of these triangles is the sum of the three sides of the preceding triangle.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Edward Murphy@21:1/5 to henh...@gmail.com on Sun Jun 19 16:08:50 2022
    On 6/18/2022 11:56 AM, henh...@gmail.com wrote:

    (3,4,5) (5,12,13) ...

    i can ask HAL to give me 10 more or 100 more
    Pythagorean triples, but ... writing a program to search for them
    is rather hard to do... (i didn't even attempt it)

    Rather than searching, you could just use the method described here:
    https://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple
    and then determine individual upper bounds on m, n, and k (above which
    the hypotenuse is necessarily larger than the upper bound of your
    desired range).

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Edward Murphy@21:1/5 to henh...@gmail.com on Sun Jun 19 17:59:21 2022
    On 6/19/2022 5:42 PM, henh...@gmail.com wrote:

    Some of the triples seem to contain "Twins"

    5 12 13 <------------ (12, 13)
    45 1012 1013 <------- the first 1000+
    95 4512 4513 ---------------

    a = m^2 - n^2, b = 2mn, c = m^2 + n^2

    m = 3, n = 2 -> a = 5, b = 12, c = 13
    m = 23, n = 2 -> a = 45, b = 1012, c = 1013
    m = 48, n = 47 -> a = 95, b = 4512, c = 4513

    and in general
    m = 5x+3, n = 5x+2 -> a = 10x + 5
    b = 50x^2 + 50x + 12
    c = 50x^2 + 50x + 13
    and x^2 + x is always even (sum of either two even numbers or two odd
    numbers), so this amounts to
    b = 100*y + 12
    c = 100*y + 13
    for some integer y, i.e. b ends in 12 and c ends in 13.

    A more involved followup exercise would be to identify similar patterns
    where
    b = p*10^q + r
    c = p*10^q + s
    where
    p is an integer
    q is an integer >= 2
    r and s are integers < 10^q
    and then see if multiple such patterns form any larger-scale patterns.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From henhanna@gmail.com@21:1/5 to Edward Murphy on Sun Jun 19 17:42:26 2022
    On Sunday, June 19, 2022 at 4:08:59 PM UTC-7, Edward Murphy wrote:
    On 6/18/2022 11:56 AM, henh...@gmail.com wrote:

    (3,4,5) (5,12,13) ...

    i can ask HAL to give me 10 more or 100 more
    Pythagorean triples, but ... writing a program to search for them
    is rather hard to do... (i didn't even attempt it)
    Rather than searching, you could just use the method described here: https://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple
    and then determine individual upper bounds on m, n, and k (above which
    the hypotenuse is necessarily larger than the upper bound of your
    desired range).


    thanks.... i realized that searching is pretty easy to do...

    Some of the triples seem to contain "Twins"


    (define (run)
    (do ((x 3 (+ 1 x))) ((> x 100))
    (do ((y x (+ 1 y))) ((> y 1000000))
    (let ((z (sqrt (+ (* x x) (* y y)))))
    (if (integer? z)
    (begin
    (write x) (display " ") (write y) (display " ") (write z) (newline)))))))
    (run)


    (load "pyth.lsp")
    3 4 5
    5 12 13 <------------ (12, 13)
    6 8 10
    7 24 25
    8 15 17
    9 12 15
    9 40 41
    10 24 26
    11 60 61
    12 16 20
    12 35 37
    13 84 85
    14 48 50
    15 20 25
    15 36 39
    15 112 113
    16 30 34
    16 63 65
    17 144 145
    18 24 30
    18 80 82
    19 180 181
    20 21 29
    20 48 52
    20 99 101
    .........................
    41 840 841
    .........................

    45 1012 1013 <------- the first 1000+
    46 528 530
    47 1104 1105 <------- the second 1000+
    .........................

    49 1200 1201


    51 1300 1301


    53 1404 1405


    55 1512 1513


    57 1624 1625


    59 1740 1741


    60 899 901
    61 1860 1861


    63 1984 1985


    64 1023 1025


    65 2112 2113


    68 1155 1157


    69 2380 2381


    71 2520 2521


    72 1295 1297

    73 2664 2665


    75 2812 2813


    79 3120 3121


    80 1599 1601


    81 3280 3281


    83 3444 3445


    87 3784 3785


    89 3960 3961


    91 4140 4141


    95 4512 4513 ---------------


    99 4900 4901 ------------
    100 105 145
    100 240 260
    100 495 505
    100 621 629
    100 1248 1252
    100 2499 2501 ----------


    (103, 5304, 5305)

    (105, 5512, 5513)

    (1003, 503004, 503005)

    (1005, 505012, 505013)


    #t
    gosh>

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From henhanna@gmail.com@21:1/5 to henh...@gmail.com on Mon Jun 20 10:13:55 2022
    On Monday, June 20, 2022 at 10:07:42 AM UTC-7, henh...@gmail.com wrote:
    On Sunday, June 19, 2022 at 5:59:30 PM UTC-7, Edward Murphy wrote:
    On 6/19/2022 5:42 PM, henh...@gmail.com wrote:

    Some of the triples seem to contain "Twins"
    5 12 13 <------------ (12, 13)
    45 1012 1013 <------- the first 1000+
    95 4512 4513 ---------------

    a = m^2 - n^2, b = 2mn, c = m^2 + n^2

    m = 3, n = 2 -> a = 5, b = 12, c = 13
    m = 23, n = 2 -> a = 45, b = 1012, c = 1013
    m = 48, n = 47 -> a = 95, b = 4512, c = 4513

    and in general
    m = 5x+3, n = 5x+2 -> a = 10x + 5
    b = 50x^2 + 50x + 12
    c = 50x^2 + 50x + 13
    and x^2 + x is always even (sum of either two even numbers or two odd numbers), so this amounts to
    b = 100*y + 12
    c = 100*y + 13
    for some integer y, i.e. b ends in 12 and c ends in 13.

    A more involved followup exercise would be to identify similar patterns where
    b = p*10^q + r
    c = p*10^q + s
    where
    p is an integer
    q is an integer >= 2
    r and s are integers < 10^q
    and then see if multiple such patterns form any larger-scale patterns.
    there's always a Twin (2-twin or 1-twin) at the end.

    wow... every square (A^2) can be expressed as (C^2 - B^2)


    except where A === 1, 2, 4


    what else do you notice ?



    (load "pyth.lsp")

    ( 3, 4, 5 )


    ( 5, 12, 13 )

    ( 6, 8, 10 )

    ( 7, 24, 25 )

    ( 8, 15, 17 )

    ( 9, 12, 15 )
    ( 9, 40, 41 )

    ( 10, 24, 26 )

    ( 11, 60, 61 )

    ( 12, 16, 20 )
    ( 12, 35, 37 )

    ( 13, 84, 85 )

    ( 14, 48, 50 )

    ( 15, 20, 25 )
    ( 15, 36, 39 )
    ( 15, 112, 113 )

    ( 16, 30, 34 )
    ( 16, 63, 65 )

    ( 17, 144, 145 )

    ( 18, 24, 30 )
    ( 18, 80, 82 )

    ( 19, 180, 181 )

    ( 20, 21, 29 )
    ( 20, 48, 52 )
    ( 20, 99, 101 )

    ( 21, 28, 35 )
    ( 21, 72, 75 )
    ( 21, 220, 221 )

    ( 22, 120, 122 )

    ( 23, 264, 265 )

    ( 24, 32, 40 )
    ( 24, 45, 51 )
    ( 24, 70, 74 )
    ( 24, 143, 145 )

    ( 25, 60, 65 )
    ( 25, 312, 313 )

    ( 26, 168, 170 )

    ( 27, 36, 45 )
    ( 27, 120, 123 )
    ( 27, 364, 365 )

    ( 28, 45, 53 )
    ( 28, 96, 100 )
    ( 28, 195, 197 )

    ( 29, 420, 421 )

    ( 30, 40, 50 )
    ( 30, 72, 78 )
    ( 30, 224, 226 )

    ( 31, 480, 481 )

    ( 32, 60, 68 )
    ( 32, 126, 130 )
    ( 32, 255, 257 )

    ( 33, 44, 55 )
    ( 33, 56, 65 )
    ( 33, 180, 183 )
    ( 33, 544, 545 )

    ( 34, 288, 290 )

    ( 35, 84, 91 )
    ( 35, 120, 125 )
    ( 35, 612, 613 )

    ( 36, 48, 60 )
    ( 36, 77, 85 )
    ( 36, 105, 111 )
    ( 36, 160, 164 )
    ( 36, 323, 325 )

    ( 37, 684, 685 )

    ( 38, 360, 362 )

    ( 39, 52, 65 )
    ( 39, 80, 89 )
    ( 39, 252, 255 )
    ( 39, 760, 761 )

    ( 40, 42, 58 )
    ( 40, 75, 85 )
    ( 40, 96, 104 )
    ( 40, 198, 202 )
    ( 40, 399, 401 )

    ( 41, 840, 841 )

    ( 42, 56, 70 )
    ( 42, 144, 150 )
    ( 42, 440, 442 )

    ( 43, 924, 925 )

    ( 44, 117, 125 )
    ( 44, 240, 244 )
    ( 44, 483, 485 )

    ( 45, 60, 75 )
    ( 45, 108, 117 )
    ( 45, 200, 205 )
    ( 45, 336, 339 )
    ( 45, 1012, 1013 )

    ( 46, 528, 530 )

    ( 47, 1104, 1105 )

    ( 48, 55, 73 )
    ( 48, 64, 80 )
    ( 48, 90, 102 )
    ( 48, 140, 148 )
    ( 48, 189, 195 )
    ( 48, 286, 290 )
    ( 48, 575, 577 )

    ( 49, 168, 175 )
    ( 49, 1200, 1201 )

    ( 50, 120, 130 )
    ( 50, 624, 626 )

    ( 51, 68, 85 )
    ( 51, 140, 149 )
    ( 51, 432, 435 )
    ( 51, 1300, 1301 )

    ( 52, 165, 173 )
    ( 52, 336, 340 )
    ( 52, 675, 677 )

    ( 53, 1404, 1405 )

    ( 54, 72, 90 )
    ( 54, 240, 246 )
    ( 54, 728, 730 )

    ( 55, 132, 143 )
    ( 55, 300, 305 )
    ( 55, 1512, 1513 )

    ( 56, 90, 106 )
    ( 56, 105, 119 )
    ( 56, 192, 200 )
    ( 56, 390, 394 )
    ( 56, 783, 785 )

    ( 57, 76, 95 )
    ( 57, 176, 185 )
    ( 57, 540, 543 )
    ( 57, 1624, 1625 )

    ( 58, 840, 842 )

    ( 59, 1740, 1741 )

    ( 60, 63, 87 )
    ( 60, 80, 100 )
    ( 60, 91, 109 )
    ( 60, 144, 156 )
    ( 60, 175, 185 )
    ( 60, 221, 229 )
    ( 60, 297, 303 )
    ( 60, 448, 452 )
    ( 60, 899, 901 )

    ( 61, 1860, 1861 )

    ( 62, 960, 962 )

    ( 63, 84, 105 )
    ( 63, 216, 225 )
    ( 63, 280, 287 )
    ( 63, 660, 663 )
    ( 63, 1984, 1985 )

    ( 64, 120, 136 )
    ( 64, 252, 260 )
    ( 64, 510, 514 )
    ( 64, 1023, 1025 )

    ( 65, 72, 97 )
    ( 65, 156, 169 )
    ( 65, 420, 425 )
    ( 65, 2112, 2113 )

    ( 66, 88, 110 )
    ( 66, 112, 130 )
    ( 66, 360, 366 )
    ( 66, 1088, 1090 )

    ( 67, 2244, 2245 )

    ( 68, 285, 293 )
    ( 68, 576, 580 )
    ( 68, 1155, 1157 )

    ( 69, 92, 115 )
    ( 69, 260, 269 )
    ( 69, 792, 795 )
    ( 69, 2380, 2381 )

    ( 70, 168, 182 )
    ( 70, 240, 250 )
    ( 70, 1224, 1226 )

    ( 71, 2520, 2521 )

    ( 72, 96, 120 )
    ( 72, 135, 153 )
    ( 72, 154, 170 )
    ( 72, 210, 222 )
    ( 72, 320, 328 )
    ( 72, 429, 435 )
    ( 72, 646, 650 )
    ( 72, 1295, 1297 )

    ( 73, 2664, 2665 )

    ( 74, 1368, 1370 )

    ( 75, 100, 125 )
    ( 75, 180, 195 )
    ( 75, 308, 317 )
    ( 75, 560, 565 )
    ( 75, 936, 939 )
    ( 75, 2812, 2813 )

    ( 76, 357, 365 )
    ( 76, 720, 724 )
    ( 76, 1443, 1445 )

    ( 77, 264, 275 )
    ( 77, 420, 427 )
    ( 77, 2964, 2965 )

    ( 78, 104, 130 )
    ( 78, 160, 178 )
    ( 78, 504, 510 )
    ( 78, 1520, 1522 )

    ( 79, 3120, 3121 )

    ( 80, 84, 116 )
    ( 80, 150, 170 )
    ( 80, 192, 208 )
    ( 80, 315, 325 )
    ( 80, 396, 404 )
    ( 80, 798, 802 )
    ( 80, 1599, 1601 )

    ( 81, 108, 135 )
    ( 81, 360, 369 )
    ( 81, 1092, 1095 )
    ( 81, 3280, 3281 )

    ( 82, 1680, 1682 )

    ( 83, 3444, 3445 )

    ( 84, 112, 140 )
    ( 84, 135, 159 )
    ( 84, 187, 205 )
    ( 84, 245, 259 )
    ( 84, 288, 300 )
    ( 84, 437, 445 )
    ( 84, 585, 591 )
    ( 84, 880, 884 )
    ( 84, 1763, 1765 )

    ( 85, 132, 157 )
    ( 85, 204, 221 )
    ( 85, 720, 725 )
    ( 85, 3612, 3613 )

    ( 86, 1848, 1850 )

    ( 87, 116, 145 )
    ( 87, 416, 425 )
    ( 87, 1260, 1263 )
    ( 87, 3784, 3785 )

    ( 88, 105, 137 )
    ( 88, 165, 187 )
    ( 88, 234, 250 )
    ( 88, 480, 488 )
    ( 88, 966, 970 )
    ( 88, 1935, 1937 )

    ( 89, 3960, 3961 )

    ( 90, 120, 150 )
    ( 90, 216, 234 )
    ( 90, 400, 410 )
    ( 90, 672, 678 )
    ( 90, 2024, 2026 )

    ( 91, 312, 325 )
    ( 91, 588, 595 )
    ( 91, 4140, 4141 )

    ( 92, 525, 533 )
    ( 92, 1056, 1060 )
    ( 92, 2115, 2117 )

    ( 93, 124, 155 )
    ( 93, 476, 485 )
    ( 93, 1440, 1443 )
    ( 93, 4324, 4325 )

    ( 94, 2208, 2210 )

    ( 95, 168, 193 )
    ( 95, 228, 247 )
    ( 95, 900, 905 )
    ( 95, 4512, 4513 )

    ( 96, 110, 146 )
    ( 96, 128, 160 )
    ( 96, 180, 204 )
    ( 96, 247, 265 )
    ( 96, 280, 296 )
    ( 96, 378, 390 )
    ( 96, 572, 580 )
    ( 96, 765, 771 )
    ( 96, 1150, 1154 )
    ( 96, 2303, 2305 )

    ( 97, 4704, 4705 )

    ( 98, 336, 350 )
    ( 98, 2400, 2402 )

    ( 99, 132, 165 )
    ( 99, 168, 195 )
    ( 99, 440, 451 )
    ( 99, 540, 549 )
    ( 99, 1632, 1635 )
    ( 99, 4900, 4901 )

    ( 100, 105, 145 )
    ( 100, 240, 260 )
    ( 100, 495, 505 )
    ( 100, 621, 629 )
    ( 100, 1248, 1252 )
    ( 100, 2499, 2501 )

    ( 101, 5100, 5101 )

    ( 102, 136, 170 )
    ( 102, 280, 298 )
    ( 102, 864, 870 )
    ( 102, 2600, 2602 )

    ( 103, 5304, 5305 )

    ( 104, 153, 185 )
    ( 104, 195, 221 )
    ( 104, 330, 346 )
    ( 104, 672, 680 )
    ( 104, 1350, 1354 )
    ( 104, 2703, 2705 )

    ( 105, 140, 175 )
    ( 105, 208, 233 )
    ( 105, 252, 273 )
    ( 105, 360, 375 )
    ( 105, 608, 617 )
    ( 105, 784, 791 )
    ( 105, 1100, 1105 )
    ( 105, 1836, 1839 )
    ( 105, 5512, 5513 )



    ( 999, 1332, 1665 )
    ( 999, 1932, 2175 )
    ( 999, 4440, 4551 )
    ( 999, 6120, 6201 )
    ( 999, 13468, 13505 )
    ( 999, 18468, 18495 )
    ( 999, 55440, 55449 )
    ( 999, 166332, 166335 )
    ( 999, 499000, 499001 )

    ( 1000, 1050, 1450 )
    ( 1000, 1875, 2125 )
    ( 1000, 2400, 2600 )
    ( 1000, 3045, 3205 )
    ( 1000, 4950, 5050 )
    ( 1000, 6210, 6290 )
    ( 1000, 9975, 10025 )
    ( 1000, 12480, 12520 )
    ( 1000, 15609, 15641 )
    ( 1000, 24990, 25010 )
    ( 1000, 31242, 31258 )
    ( 1000, 49995, 50005 )
    ( 1000, 62496, 62504 )
    ( 1000, 124998, 125002 )
    ( 1000, 249999, 250001 )
    ( 1001, 2880, 3049 )
    ( 1001, 3432, 3575 )
    ( 1001, 4080, 4201 )
    ( 1001, 5460, 5551 )
    ( 1001, 6468, 6545 )
    ( 1001, 10200, 10249 )
    ( 1001, 38532, 38545 )
    ( 1001, 45540, 45551 )
    ( 1001, 71568, 71575 )
    ( 1001, 501000, 501001 )
    ( 1002, 1336, 1670 )
    ( 1002, 27880, 27898 )
    ( 1002, 83664, 83670 )
    ( 1002, 251000, 251002 )
    ( 1003, 1596, 1885 )
    ( 1003, 8496, 8555 )
    ( 1003, 29580, 29597 )
    ( 1003, 503004, 503005 )
    ( 1004, 62997, 63005 )
    ( 1004, 126000, 126004 )
    ( 1004, 252003, 252005 )
    ( 1005, 1340, 1675 )
    ( 1005, 2132, 2357 )
    ( 1005, 2412, 2613 )
    ( 1005, 6696, 6771 )
    ( 1005, 7504, 7571 )
    ( 1005, 11200, 11245 )
    ( 1005, 20188, 20213 )
    ( 1005, 33660, 33675 )
    ( 1005, 56108, 56117 )
    ( 1005, 101000, 101005 )
    ( 1005, 168336, 168339 )
    ( 1005, 505012, 505013 )


    ( 9999, 13332, 16665 )
    ( 9999, 13668, 16935 )
    ( 9999, 16968, 19695 )
    ( 9999, 44440, 45551 )
    ( 9999, 45360, 46449 )
    ( 9999, 54540, 55449 )
    ( 9999, 55660, 56551 )
    ( 9999, 137532, 137895 )
    ( 9999, 164832, 165135 )
    ( 9999, 168168, 168465 )
    ( 9999, 413080, 413201 )
    ( 9999, 494900, 495001 )
    ( 9999, 504900, 504999 )
    ( 9999, 617120, 617201 )
    ( 9999, 1514832, 1514865 )
    ( 9999, 1851468, 1851495 )
    ( 9999, 4544540, 4544551 )
    ( 9999, 5554440, 5554449 )
    ( 9999, 16663332, 16663335 )
    ( 9999, 49990000, 49990001 )

    ( 10000, 10500, 14500 )
    ( 10000, 14025, 17225 )
    ( 10000, 18750, 21250 )
    ( 10000, 24000, 26000 )
    ( 10000, 30450, 32050 )
    ( 10000, 39375, 40625 )
    ( 10000, 49500, 50500 )
    ( 10000, 62100, 62900 )
    ( 10000, 77805, 78445 )
    ( 10000, 99750, 100250 )
    ( 10000, 124800, 125200 )
    ( 10000, 156090, 156410 )
    ( 10000, 199875, 200125 )
    ( 10000, 249900, 250100 )
    ( 10000, 312420, 312580 )
    ( 10000, 390561, 390689 )
    ( 10000, 499950, 500050 )
    ( 10000, 624960, 625040 )
    ( 10000, 781218, 781282 )
    ( 10000, 999975, 1000025 )
    ( 10000, 1249980, 1250020 )
    ( 10000, 1562484, 1562516 )
    ( 10000, 2499990, 2500010 )
    ( 10000, 3124992, 3125008 )
    ( 10000, 4999995, 5000005 )
    ( 10000, 6249996, 6250004 )
    ( 10000, 12499998, 12500002 )
    ( 10000, 24999999, 25000001 )

    ( 10001, 364968, 365105 )
    ( 10001, 685032, 685105 )
    ( 10001, 50010000, 50010001 )

    ( 10002, 13336, 16670 )
    ( 10002, 2778880, 2778898 )
    ( 10002, 8336664, 8336670 )
    ( 10002, 25010000, 25010002 )


    ( 10003, 34296, 35725 )
    ( 10003, 1020996, 1021045 )
    ( 10003, 7147140, 7147147 ) --------------------
    ( 10003, 50030004, 50030005 )

    ( 10004, 13203, 16565 )
    ( 10004, 102297, 102785 )
    ( 10004, 152397, 152725 )
    ( 10004, 204960, 205204 )
    ( 10004, 305040, 305204 )
    ( 10004, 410103, 410225 )
    ( 10004, 610203, 610285 )
    ( 10004, 6254997, 6255005 )

    ( 10004, 12510000, 12510004 ) ------------------
    ( 10004, 25020003, 25020005 )

    ( 10005, 13340, 16675 )
    ( 10005, 17600, 20245 )
    ( 10005, 18576, 21099 )
    ( 10005, 21924, 24099 )
    ( 10005, 24012, 26013 )
    ( 10005, 28152, 29877 )
    ( 10005, 30744, 32331 )
    ( 10005, 37700, 39005 )
    ( 10005, 47840, 48875 )
    ( 10005, 59092, 59933 )
    ( 10005, 68672, 69397 )
    ( 10005, 74704, 75371 )
    ( 10005, 86756, 87331 )
    ( 10005, 94348, 94877 )
    ( 10005, 114840, 115275 )
    ( 10005, 144900, 145245 )
    ( 10005, 191632, 191893 )
    ( 10005, 222332, 222557 )
    ( 10005, 241684, 241891 )
    ( 10005, 345100, 345245 )
    ( 10005, 435160, 435275 )
    ( 10005, 575244, 575331 )
    ( 10005, 667296, 667371 )
    ( 10005, 725328, 725397 )
    ( 10005, 1112200, 1112245 )
    ( 10005, 1725848, 1725877 )
    ( 10005, 2001988, 2002013 )
    ( 10005, 2176076, 2176099 )
    ( 10005, 3336660, 3336675 )
    ( 10005, 5561108, 5561117 )
    ( 10005, 10010000, 10010005 )
    ( 10005, 16683336, 16683339 )
    ( 10005, 50050012, 50050013 )

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From henhanna@gmail.com@21:1/5 to Edward Murphy on Mon Jun 20 10:07:39 2022
    On Sunday, June 19, 2022 at 5:59:30 PM UTC-7, Edward Murphy wrote:
    On 6/19/2022 5:42 PM, henh...@gmail.com wrote:

    Some of the triples seem to contain "Twins"
    5 12 13 <------------ (12, 13)
    45 1012 1013 <------- the first 1000+
    95 4512 4513 ---------------

    a = m^2 - n^2, b = 2mn, c = m^2 + n^2

    m = 3, n = 2 -> a = 5, b = 12, c = 13
    m = 23, n = 2 -> a = 45, b = 1012, c = 1013
    m = 48, n = 47 -> a = 95, b = 4512, c = 4513

    and in general
    m = 5x+3, n = 5x+2 -> a = 10x + 5
    b = 50x^2 + 50x + 12
    c = 50x^2 + 50x + 13
    and x^2 + x is always even (sum of either two even numbers or two odd numbers), so this amounts to
    b = 100*y + 12
    c = 100*y + 13
    for some integer y, i.e. b ends in 12 and c ends in 13.

    A more involved followup exercise would be to identify similar patterns
    where
    b = p*10^q + r
    c = p*10^q + s
    where
    p is an integer
    q is an integer >= 2
    r and s are integers < 10^q
    and then see if multiple such patterns form any larger-scale patterns.


    there's always a Twin (2-twin or 1-twin) at the end.

    wow... every square (A^2) can be expressed as (C^2 - B^2)

    what else do you notice ?



    (load "pyth.lsp")

    ( 3, 4, 5 )


    ( 5, 12, 13 )

    ( 6, 8, 10 )

    ( 7, 24, 25 )

    ( 8, 15, 17 )

    ( 9, 12, 15 )
    ( 9, 40, 41 )

    ( 10, 24, 26 )

    ( 11, 60, 61 )

    ( 12, 16, 20 )
    ( 12, 35, 37 )

    ( 13, 84, 85 )

    ( 14, 48, 50 )

    ( 15, 20, 25 )
    ( 15, 36, 39 )
    ( 15, 112, 113 )

    ( 16, 30, 34 )
    ( 16, 63, 65 )

    ( 17, 144, 145 )

    ( 18, 24, 30 )
    ( 18, 80, 82 )

    ( 19, 180, 181 )

    ( 20, 21, 29 )
    ( 20, 48, 52 )
    ( 20, 99, 101 )

    ( 21, 28, 35 )
    ( 21, 72, 75 )
    ( 21, 220, 221 )

    ( 22, 120, 122 )

    ( 23, 264, 265 )

    ( 24, 32, 40 )
    ( 24, 45, 51 )
    ( 24, 70, 74 )
    ( 24, 143, 145 )

    ( 25, 60, 65 )
    ( 25, 312, 313 )

    ( 26, 168, 170 )

    ( 27, 36, 45 )
    ( 27, 120, 123 )
    ( 27, 364, 365 )

    ( 28, 45, 53 )
    ( 28, 96, 100 )
    ( 28, 195, 197 )

    ( 29, 420, 421 )

    ( 30, 40, 50 )
    ( 30, 72, 78 )
    ( 30, 224, 226 )

    ( 31, 480, 481 )

    ( 32, 60, 68 )
    ( 32, 126, 130 )
    ( 32, 255, 257 )

    ( 33, 44, 55 )
    ( 33, 56, 65 )
    ( 33, 180, 183 )
    ( 33, 544, 545 )

    ( 34, 288, 290 )

    ( 35, 84, 91 )
    ( 35, 120, 125 )
    ( 35, 612, 613 )

    ( 36, 48, 60 )
    ( 36, 77, 85 )
    ( 36, 105, 111 )
    ( 36, 160, 164 )
    ( 36, 323, 325 )

    ( 37, 684, 685 )

    ( 38, 360, 362 )

    ( 39, 52, 65 )
    ( 39, 80, 89 )
    ( 39, 252, 255 )
    ( 39, 760, 761 )

    ( 40, 42, 58 )
    ( 40, 75, 85 )
    ( 40, 96, 104 )
    ( 40, 198, 202 )
    ( 40, 399, 401 )

    ( 41, 840, 841 )

    ( 42, 56, 70 )
    ( 42, 144, 150 )
    ( 42, 440, 442 )

    ( 43, 924, 925 )

    ( 44, 117, 125 )
    ( 44, 240, 244 )
    ( 44, 483, 485 )

    ( 45, 60, 75 )
    ( 45, 108, 117 )
    ( 45, 200, 205 )
    ( 45, 336, 339 )
    ( 45, 1012, 1013 )

    ( 46, 528, 530 )

    ( 47, 1104, 1105 )

    ( 48, 55, 73 )
    ( 48, 64, 80 )
    ( 48, 90, 102 )
    ( 48, 140, 148 )
    ( 48, 189, 195 )
    ( 48, 286, 290 )
    ( 48, 575, 577 )

    ( 49, 168, 175 )
    ( 49, 1200, 1201 )

    ( 50, 120, 130 )
    ( 50, 624, 626 )

    ( 51, 68, 85 )
    ( 51, 140, 149 )
    ( 51, 432, 435 )
    ( 51, 1300, 1301 )

    ( 52, 165, 173 )
    ( 52, 336, 340 )
    ( 52, 675, 677 )

    ( 53, 1404, 1405 )

    ( 54, 72, 90 )
    ( 54, 240, 246 )
    ( 54, 728, 730 )

    ( 55, 132, 143 )
    ( 55, 300, 305 )
    ( 55, 1512, 1513 )

    ( 56, 90, 106 )
    ( 56, 105, 119 )
    ( 56, 192, 200 )
    ( 56, 390, 394 )
    ( 56, 783, 785 )

    ( 57, 76, 95 )
    ( 57, 176, 185 )
    ( 57, 540, 543 )
    ( 57, 1624, 1625 )

    ( 58, 840, 842 )

    ( 59, 1740, 1741 )

    ( 60, 63, 87 )
    ( 60, 80, 100 )
    ( 60, 91, 109 )
    ( 60, 144, 156 )
    ( 60, 175, 185 )
    ( 60, 221, 229 )
    ( 60, 297, 303 )
    ( 60, 448, 452 )
    ( 60, 899, 901 )

    ( 61, 1860, 1861 )

    ( 62, 960, 962 )

    ( 63, 84, 105 )
    ( 63, 216, 225 )
    ( 63, 280, 287 )
    ( 63, 660, 663 )
    ( 63, 1984, 1985 )

    ( 64, 120, 136 )
    ( 64, 252, 260 )
    ( 64, 510, 514 )
    ( 64, 1023, 1025 )

    ( 65, 72, 97 )
    ( 65, 156, 169 )
    ( 65, 420, 425 )
    ( 65, 2112, 2113 )

    ( 66, 88, 110 )
    ( 66, 112, 130 )
    ( 66, 360, 366 )
    ( 66, 1088, 1090 )

    ( 67, 2244, 2245 )

    ( 68, 285, 293 )
    ( 68, 576, 580 )
    ( 68, 1155, 1157 )

    ( 69, 92, 115 )
    ( 69, 260, 269 )
    ( 69, 792, 795 )
    ( 69, 2380, 2381 )

    ( 70, 168, 182 )
    ( 70, 240, 250 )
    ( 70, 1224, 1226 )

    ( 71, 2520, 2521 )

    ( 72, 96, 120 )
    ( 72, 135, 153 )
    ( 72, 154, 170 )
    ( 72, 210, 222 )
    ( 72, 320, 328 )
    ( 72, 429, 435 )
    ( 72, 646, 650 )
    ( 72, 1295, 1297 )

    ( 73, 2664, 2665 )

    ( 74, 1368, 1370 )

    ( 75, 100, 125 )
    ( 75, 180, 195 )
    ( 75, 308, 317 )
    ( 75, 560, 565 )
    ( 75, 936, 939 )
    ( 75, 2812, 2813 )

    ( 76, 357, 365 )
    ( 76, 720, 724 )
    ( 76, 1443, 1445 )

    ( 77, 264, 275 )
    ( 77, 420, 427 )
    ( 77, 2964, 2965 )

    ( 78, 104, 130 )
    ( 78, 160, 178 )
    ( 78, 504, 510 )
    ( 78, 1520, 1522 )

    ( 79, 3120, 3121 )

    ( 80, 84, 116 )
    ( 80, 150, 170 )
    ( 80, 192, 208 )
    ( 80, 315, 325 )
    ( 80, 396, 404 )
    ( 80, 798, 802 )
    ( 80, 1599, 1601 )

    ( 81, 108, 135 )
    ( 81, 360, 369 )
    ( 81, 1092, 1095 )
    ( 81, 3280, 3281 )

    ( 82, 1680, 1682 )

    ( 83, 3444, 3445 )

    ( 84, 112, 140 )
    ( 84, 135, 159 )
    ( 84, 187, 205 )
    ( 84, 245, 259 )
    ( 84, 288, 300 )
    ( 84, 437, 445 )
    ( 84, 585, 591 )
    ( 84, 880, 884 )
    ( 84, 1763, 1765 )

    ( 85, 132, 157 )
    ( 85, 204, 221 )
    ( 85, 720, 725 )
    ( 85, 3612, 3613 )

    ( 86, 1848, 1850 )

    ( 87, 116, 145 )
    ( 87, 416, 425 )
    ( 87, 1260, 1263 )
    ( 87, 3784, 3785 )

    ( 88, 105, 137 )
    ( 88, 165, 187 )
    ( 88, 234, 250 )
    ( 88, 480, 488 )
    ( 88, 966, 970 )
    ( 88, 1935, 1937 )

    ( 89, 3960, 3961 )

    ( 90, 120, 150 )
    ( 90, 216, 234 )
    ( 90, 400, 410 )
    ( 90, 672, 678 )
    ( 90, 2024, 2026 )

    ( 91, 312, 325 )
    ( 91, 588, 595 )
    ( 91, 4140, 4141 )

    ( 92, 525, 533 )
    ( 92, 1056, 1060 )
    ( 92, 2115, 2117 )

    ( 93, 124, 155 )
    ( 93, 476, 485 )
    ( 93, 1440, 1443 )
    ( 93, 4324, 4325 )

    ( 94, 2208, 2210 )

    ( 95, 168, 193 )
    ( 95, 228, 247 )
    ( 95, 900, 905 )
    ( 95, 4512, 4513 )

    ( 96, 110, 146 )
    ( 96, 128, 160 )
    ( 96, 180, 204 )
    ( 96, 247, 265 )
    ( 96, 280, 296 )
    ( 96, 378, 390 )
    ( 96, 572, 580 )
    ( 96, 765, 771 )
    ( 96, 1150, 1154 )
    ( 96, 2303, 2305 )

    ( 97, 4704, 4705 )

    ( 98, 336, 350 )
    ( 98, 2400, 2402 )

    ( 99, 132, 165 )
    ( 99, 168, 195 )
    ( 99, 440, 451 )
    ( 99, 540, 549 )
    ( 99, 1632, 1635 )
    ( 99, 4900, 4901 )

    ( 100, 105, 145 )
    ( 100, 240, 260 )
    ( 100, 495, 505 )
    ( 100, 621, 629 )
    ( 100, 1248, 1252 )
    ( 100, 2499, 2501 )

    ( 101, 5100, 5101 )

    ( 102, 136, 170 )
    ( 102, 280, 298 )
    ( 102, 864, 870 )
    ( 102, 2600, 2602 )

    ( 103, 5304, 5305 )

    ( 104, 153, 185 )
    ( 104, 195, 221 )
    ( 104, 330, 346 )
    ( 104, 672, 680 )
    ( 104, 1350, 1354 )
    ( 104, 2703, 2705 )

    ( 105, 140, 175 )
    ( 105, 208, 233 )
    ( 105, 252, 273 )
    ( 105, 360, 375 )
    ( 105, 608, 617 )
    ( 105, 784, 791 )
    ( 105, 1100, 1105 )
    ( 105, 1836, 1839 )
    ( 105, 5512, 5513 )



    ( 999, 1332, 1665 )
    ( 999, 1932, 2175 )
    ( 999, 4440, 4551 )
    ( 999, 6120, 6201 )
    ( 999, 13468, 13505 )
    ( 999, 18468, 18495 )
    ( 999, 55440, 55449 )
    ( 999, 166332, 166335 )
    ( 999, 499000, 499001 )

    ( 1000, 1050, 1450 )
    ( 1000, 1875, 2125 )
    ( 1000, 2400, 2600 )
    ( 1000, 3045, 3205 )
    ( 1000, 4950, 5050 )
    ( 1000, 6210, 6290 )
    ( 1000, 9975, 10025 )
    ( 1000, 12480, 12520 )
    ( 1000, 15609, 15641 )
    ( 1000, 24990, 25010 )
    ( 1000, 31242, 31258 )
    ( 1000, 49995, 50005 )
    ( 1000, 62496, 62504 )
    ( 1000, 124998, 125002 )
    ( 1000, 249999, 250001 )
    ( 1001, 2880, 3049 )
    ( 1001, 3432, 3575 )
    ( 1001, 4080, 4201 )
    ( 1001, 5460, 5551 )
    ( 1001, 6468, 6545 )
    ( 1001, 10200, 10249 )
    ( 1001, 38532, 38545 )
    ( 1001, 45540, 45551 )
    ( 1001, 71568, 71575 )
    ( 1001, 501000, 501001 )
    ( 1002, 1336, 1670 )
    ( 1002, 27880, 27898 )
    ( 1002, 83664, 83670 )
    ( 1002, 251000, 251002 )
    ( 1003, 1596, 1885 )
    ( 1003, 8496, 8555 )
    ( 1003, 29580, 29597 )
    ( 1003, 503004, 503005 )
    ( 1004, 62997, 63005 )
    ( 1004, 126000, 126004 )
    ( 1004, 252003, 252005 )
    ( 1005, 1340, 1675 )
    ( 1005, 2132, 2357 )
    ( 1005, 2412, 2613 )
    ( 1005, 6696, 6771 )
    ( 1005, 7504, 7571 )
    ( 1005, 11200, 11245 )
    ( 1005, 20188, 20213 )
    ( 1005, 33660, 33675 )
    ( 1005, 56108, 56117 )
    ( 1005, 101000, 101005 )
    ( 1005, 168336, 168339 )
    ( 1005, 505012, 505013 )


    ( 9999, 13332, 16665 )
    ( 9999, 13668, 16935 )
    ( 9999, 16968, 19695 )
    ( 9999, 44440, 45551 )
    ( 9999, 45360, 46449 )
    ( 9999, 54540, 55449 )
    ( 9999, 55660, 56551 )
    ( 9999, 137532, 137895 )
    ( 9999, 164832, 165135 )
    ( 9999, 168168, 168465 )
    ( 9999, 413080, 413201 )
    ( 9999, 494900, 495001 )
    ( 9999, 504900, 504999 )
    ( 9999, 617120, 617201 )
    ( 9999, 1514832, 1514865 )
    ( 9999, 1851468, 1851495 )
    ( 9999, 4544540, 4544551 )
    ( 9999, 5554440, 5554449 )
    ( 9999, 16663332, 16663335 )
    ( 9999, 49990000, 49990001 )

    ( 10000, 10500, 14500 )
    ( 10000, 14025, 17225 )
    ( 10000, 18750, 21250 )
    ( 10000, 24000, 26000 )
    ( 10000, 30450, 32050 )
    ( 10000, 39375, 40625 )
    ( 10000, 49500, 50500 )
    ( 10000, 62100, 62900 )
    ( 10000, 77805, 78445 )
    ( 10000, 99750, 100250 )
    ( 10000, 124800, 125200 )
    ( 10000, 156090, 156410 )
    ( 10000, 199875, 200125 )
    ( 10000, 249900, 250100 )
    ( 10000, 312420, 312580 )
    ( 10000, 390561, 390689 )
    ( 10000, 499950, 500050 )
    ( 10000, 624960, 625040 )
    ( 10000, 781218, 781282 )
    ( 10000, 999975, 1000025 )
    ( 10000, 1249980, 1250020 )
    ( 10000, 1562484, 1562516 )
    ( 10000, 2499990, 2500010 )
    ( 10000, 3124992, 3125008 )
    ( 10000, 4999995, 5000005 )
    ( 10000, 6249996, 6250004 )
    ( 10000, 12499998, 12500002 )
    ( 10000, 24999999, 25000001 )

    ( 10001, 364968, 365105 )
    ( 10001, 685032, 685105 )
    ( 10001, 50010000, 50010001 )

    ( 10002, 13336, 16670 )
    ( 10002, 2778880, 2778898 )
    ( 10002, 8336664, 8336670 )
    ( 10002, 25010000, 25010002 )


    ( 10003, 34296, 35725 )
    ( 10003, 1020996, 1021045 )
    ( 10003, 7147140, 7147147 ) --------------------
    ( 10003, 50030004, 50030005 )

    ( 10004, 13203, 16565 )
    ( 10004, 102297, 102785 )
    ( 10004, 152397, 152725 )
    ( 10004, 204960, 205204 )
    ( 10004, 305040, 305204 )
    ( 10004, 410103, 410225 )
    ( 10004, 610203, 610285 )
    ( 10004, 6254997, 6255005 )

    ( 10004, 12510000, 12510004 ) ------------------
    ( 10004, 25020003, 25020005 )

    ( 10005, 13340, 16675 )
    ( 10005, 17600, 20245 )
    ( 10005, 18576, 21099 )
    ( 10005, 21924, 24099 )
    ( 10005, 24012, 26013 )
    ( 10005, 28152, 29877 )
    ( 10005, 30744, 32331 )
    ( 10005, 37700, 39005 )
    ( 10005, 47840, 48875 )
    ( 10005, 59092, 59933 )
    ( 10005, 68672, 69397 )
    ( 10005, 74704, 75371 )
    ( 10005, 86756, 87331 )
    ( 10005, 94348, 94877 )
    ( 10005, 114840, 115275 )
    ( 10005, 144900, 145245 )
    ( 10005, 191632, 191893 )
    ( 10005, 222332, 222557 )
    ( 10005, 241684, 241891 )
    ( 10005, 345100, 345245 )
    ( 10005, 435160, 435275 )
    ( 10005, 575244, 575331 )
    ( 10005, 667296, 667371 )
    ( 10005, 725328, 725397 )
    ( 10005, 1112200, 1112245 )
    ( 10005, 1725848, 1725877 )
    ( 10005, 2001988, 2002013 )
    ( 10005, 2176076, 2176099 )
    ( 10005, 3336660, 3336675 )
    ( 10005, 5561108, 5561117 )
    ( 10005, 10010000, 10010005 )
    ( 10005, 16683336, 16683339 )
    ( 10005, 50050012, 50050013 )

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Jonathan Dushoff@21:1/5 to henh...@gmail.com on Tue Jun 21 09:20:22 2022
    If you're interested in these patterns, you might like this picture of the triples that I made a few years ago http://dushoff.github.io/notebook/pythagoras.html.






    On Monday, June 20, 2022 at 1:13:58 PM UTC-4, henh...@gmail.com wrote:
    On Monday, June 20, 2022 at 10:07:42 AM UTC-7, henh...@gmail.com wrote:
    On Sunday, June 19, 2022 at 5:59:30 PM UTC-7, Edward Murphy wrote:
    On 6/19/2022 5:42 PM, henh...@gmail.com wrote:

    Some of the triples seem to contain "Twins"
    5 12 13 <------------ (12, 13)
    45 1012 1013 <------- the first 1000+
    95 4512 4513 ---------------

    a = m^2 - n^2, b = 2mn, c = m^2 + n^2

    m = 3, n = 2 -> a = 5, b = 12, c = 13
    m = 23, n = 2 -> a = 45, b = 1012, c = 1013
    m = 48, n = 47 -> a = 95, b = 4512, c = 4513

    and in general
    m = 5x+3, n = 5x+2 -> a = 10x + 5
    b = 50x^2 + 50x + 12
    c = 50x^2 + 50x + 13
    and x^2 + x is always even (sum of either two even numbers or two odd numbers), so this amounts to
    b = 100*y + 12
    c = 100*y + 13
    for some integer y, i.e. b ends in 12 and c ends in 13.

    A more involved followup exercise would be to identify similar patterns where
    b = p*10^q + r
    c = p*10^q + s
    where
    p is an integer
    q is an integer >= 2
    r and s are integers < 10^q
    and then see if multiple such patterns form any larger-scale patterns.
    there's always a Twin (2-twin or 1-twin) at the end.

    wow... every square (A^2) can be expressed as (C^2 - B^2)
    except where A === 1, 2, 4
    what else do you notice ?



    (load "pyth.lsp")

    ( 3, 4, 5 )


    ( 5, 12, 13 )

    ( 6, 8, 10 )

    ( 7, 24, 25 )

    ( 8, 15, 17 )

    ( 9, 12, 15 )
    ( 9, 40, 41 )

    ( 10, 24, 26 )

    ( 11, 60, 61 )

    ( 12, 16, 20 )
    ( 12, 35, 37 )

    ( 13, 84, 85 )

    ( 14, 48, 50 )

    ( 15, 20, 25 )
    ( 15, 36, 39 )
    ( 15, 112, 113 )

    ( 16, 30, 34 )
    ( 16, 63, 65 )

    ( 17, 144, 145 )

    ( 18, 24, 30 )
    ( 18, 80, 82 )

    ( 19, 180, 181 )

    ( 20, 21, 29 )
    ( 20, 48, 52 )
    ( 20, 99, 101 )

    ( 21, 28, 35 )
    ( 21, 72, 75 )
    ( 21, 220, 221 )

    ( 22, 120, 122 )

    ( 23, 264, 265 )

    ( 24, 32, 40 )
    ( 24, 45, 51 )
    ( 24, 70, 74 )
    ( 24, 143, 145 )

    ( 25, 60, 65 )
    ( 25, 312, 313 )

    ( 26, 168, 170 )

    ( 27, 36, 45 )
    ( 27, 120, 123 )
    ( 27, 364, 365 )

    ( 28, 45, 53 )
    ( 28, 96, 100 )
    ( 28, 195, 197 )

    ( 29, 420, 421 )

    ( 30, 40, 50 )
    ( 30, 72, 78 )
    ( 30, 224, 226 )

    ( 31, 480, 481 )

    ( 32, 60, 68 )
    ( 32, 126, 130 )
    ( 32, 255, 257 )

    ( 33, 44, 55 )
    ( 33, 56, 65 )
    ( 33, 180, 183 )
    ( 33, 544, 545 )

    ( 34, 288, 290 )

    ( 35, 84, 91 )
    ( 35, 120, 125 )
    ( 35, 612, 613 )

    ( 36, 48, 60 )
    ( 36, 77, 85 )
    ( 36, 105, 111 )
    ( 36, 160, 164 )
    ( 36, 323, 325 )

    ( 37, 684, 685 )

    ( 38, 360, 362 )

    ( 39, 52, 65 )
    ( 39, 80, 89 )
    ( 39, 252, 255 )
    ( 39, 760, 761 )

    ( 40, 42, 58 )
    ( 40, 75, 85 )
    ( 40, 96, 104 )
    ( 40, 198, 202 )
    ( 40, 399, 401 )

    ( 41, 840, 841 )

    ( 42, 56, 70 )
    ( 42, 144, 150 )
    ( 42, 440, 442 )

    ( 43, 924, 925 )

    ( 44, 117, 125 )
    ( 44, 240, 244 )
    ( 44, 483, 485 )

    ( 45, 60, 75 )
    ( 45, 108, 117 )
    ( 45, 200, 205 )
    ( 45, 336, 339 )
    ( 45, 1012, 1013 )

    ( 46, 528, 530 )

    ( 47, 1104, 1105 )

    ( 48, 55, 73 )
    ( 48, 64, 80 )
    ( 48, 90, 102 )
    ( 48, 140, 148 )
    ( 48, 189, 195 )
    ( 48, 286, 290 )
    ( 48, 575, 577 )

    ( 49, 168, 175 )
    ( 49, 1200, 1201 )

    ( 50, 120, 130 )
    ( 50, 624, 626 )

    ( 51, 68, 85 )
    ( 51, 140, 149 )
    ( 51, 432, 435 )
    ( 51, 1300, 1301 )

    ( 52, 165, 173 )
    ( 52, 336, 340 )
    ( 52, 675, 677 )

    ( 53, 1404, 1405 )

    ( 54, 72, 90 )
    ( 54, 240, 246 )
    ( 54, 728, 730 )

    ( 55, 132, 143 )
    ( 55, 300, 305 )
    ( 55, 1512, 1513 )

    ( 56, 90, 106 )
    ( 56, 105, 119 )
    ( 56, 192, 200 )
    ( 56, 390, 394 )
    ( 56, 783, 785 )

    ( 57, 76, 95 )
    ( 57, 176, 185 )
    ( 57, 540, 543 )
    ( 57, 1624, 1625 )

    ( 58, 840, 842 )

    ( 59, 1740, 1741 )

    ( 60, 63, 87 )
    ( 60, 80, 100 )
    ( 60, 91, 109 )
    ( 60, 144, 156 )
    ( 60, 175, 185 )
    ( 60, 221, 229 )
    ( 60, 297, 303 )
    ( 60, 448, 452 )
    ( 60, 899, 901 )

    ( 61, 1860, 1861 )

    ( 62, 960, 962 )

    ( 63, 84, 105 )
    ( 63, 216, 225 )
    ( 63, 280, 287 )
    ( 63, 660, 663 )
    ( 63, 1984, 1985 )

    ( 64, 120, 136 )
    ( 64, 252, 260 )
    ( 64, 510, 514 )
    ( 64, 1023, 1025 )

    ( 65, 72, 97 )
    ( 65, 156, 169 )
    ( 65, 420, 425 )
    ( 65, 2112, 2113 )

    ( 66, 88, 110 )
    ( 66, 112, 130 )
    ( 66, 360, 366 )
    ( 66, 1088, 1090 )

    ( 67, 2244, 2245 )

    ( 68, 285, 293 )
    ( 68, 576, 580 )
    ( 68, 1155, 1157 )

    ( 69, 92, 115 )
    ( 69, 260, 269 )
    ( 69, 792, 795 )
    ( 69, 2380, 2381 )

    ( 70, 168, 182 )
    ( 70, 240, 250 )
    ( 70, 1224, 1226 )

    ( 71, 2520, 2521 )

    ( 72, 96, 120 )
    ( 72, 135, 153 )
    ( 72, 154, 170 )
    ( 72, 210, 222 )
    ( 72, 320, 328 )
    ( 72, 429, 435 )
    ( 72, 646, 650 )
    ( 72, 1295, 1297 )

    ( 73, 2664, 2665 )

    ( 74, 1368, 1370 )

    ( 75, 100, 125 )
    ( 75, 180, 195 )
    ( 75, 308, 317 )
    ( 75, 560, 565 )
    ( 75, 936, 939 )
    ( 75, 2812, 2813 )

    ( 76, 357, 365 )
    ( 76, 720, 724 )
    ( 76, 1443, 1445 )

    ( 77, 264, 275 )
    ( 77, 420, 427 )
    ( 77, 2964, 2965 )

    ( 78, 104, 130 )
    ( 78, 160, 178 )
    ( 78, 504, 510 )
    ( 78, 1520, 1522 )

    ( 79, 3120, 3121 )

    ( 80, 84, 116 )
    ( 80, 150, 170 )
    ( 80, 192, 208 )
    ( 80, 315, 325 )
    ( 80, 396, 404 )
    ( 80, 798, 802 )
    ( 80, 1599, 1601 )

    ( 81, 108, 135 )
    ( 81, 360, 369 )
    ( 81, 1092, 1095 )
    ( 81, 3280, 3281 )

    ( 82, 1680, 1682 )

    ( 83, 3444, 3445 )

    ( 84, 112, 140 )
    ( 84, 135, 159 )
    ( 84, 187, 205 )
    ( 84, 245, 259 )
    ( 84, 288, 300 )
    ( 84, 437, 445 )
    ( 84, 585, 591 )
    ( 84, 880, 884 )
    ( 84, 1763, 1765 )

    ( 85, 132, 157 )
    ( 85, 204, 221 )
    ( 85, 720, 725 )
    ( 85, 3612, 3613 )

    ( 86, 1848, 1850 )

    ( 87, 116, 145 )
    ( 87, 416, 425 )
    ( 87, 1260, 1263 )
    ( 87, 3784, 3785 )

    ( 88, 105, 137 )
    ( 88, 165, 187 )
    ( 88, 234, 250 )
    ( 88, 480, 488 )
    ( 88, 966, 970 )
    ( 88, 1935, 1937 )

    ( 89, 3960, 3961 )

    ( 90, 120, 150 )
    ( 90, 216, 234 )
    ( 90, 400, 410 )
    ( 90, 672, 678 )
    ( 90, 2024, 2026 )

    ( 91, 312, 325 )
    ( 91, 588, 595 )
    ( 91, 4140, 4141 )

    ( 92, 525, 533 )
    ( 92, 1056, 1060 )
    ( 92, 2115, 2117 )

    ( 93, 124, 155 )
    ( 93, 476, 485 )
    ( 93, 1440, 1443 )
    ( 93, 4324, 4325 )

    ( 94, 2208, 2210 )

    ( 95, 168, 193 )
    ( 95, 228, 247 )
    ( 95, 900, 905 )
    ( 95, 4512, 4513 )

    ( 96, 110, 146 )
    ( 96, 128, 160 )
    ( 96, 180, 204 )
    ( 96, 247, 265 )
    ( 96, 280, 296 )
    ( 96, 378, 390 )
    ( 96, 572, 580 )
    ( 96, 765, 771 )
    ( 96, 1150, 1154 )
    ( 96, 2303, 2305 )

    ( 97, 4704, 4705 )

    ( 98, 336, 350 )
    ( 98, 2400, 2402 )

    ( 99, 132, 165 )
    ( 99, 168, 195 )
    ( 99, 440, 451 )
    ( 99, 540, 549 )
    ( 99, 1632, 1635 )
    ( 99, 4900, 4901 )

    ( 100, 105, 145 )
    ( 100, 240, 260 )
    ( 100, 495, 505 )
    ( 100, 621, 629 )
    ( 100, 1248, 1252 )
    ( 100, 2499, 2501 )

    ( 101, 5100, 5101 )

    ( 102, 136, 170 )
    ( 102, 280, 298 )
    ( 102, 864, 870 )
    ( 102, 2600, 2602 )

    ( 103, 5304, 5305 )

    ( 104, 153, 185 )
    ( 104, 195, 221 )
    ( 104, 330, 346 )
    ( 104, 672, 680 )
    ( 104, 1350, 1354 )
    ( 104, 2703, 2705 )

    ( 105, 140, 175 )
    ( 105, 208, 233 )
    ( 105, 252, 273 )
    ( 105, 360, 375 )
    ( 105, 608, 617 )
    ( 105, 784, 791 )
    ( 105, 1100, 1105 )
    ( 105, 1836, 1839 )
    ( 105, 5512, 5513 )



    ( 999, 1332, 1665 )
    ( 999, 1932, 2175 )
    ( 999, 4440, 4551 )
    ( 999, 6120, 6201 )
    ( 999, 13468, 13505 )
    ( 999, 18468, 18495 )
    ( 999, 55440, 55449 )
    ( 999, 166332, 166335 )
    ( 999, 499000, 499001 )

    ( 1000, 1050, 1450 )
    ( 1000, 1875, 2125 )
    ( 1000, 2400, 2600 )
    ( 1000, 3045, 3205 )
    ( 1000, 4950, 5050 )
    ( 1000, 6210, 6290 )
    ( 1000, 9975, 10025 )
    ( 1000, 12480, 12520 )
    ( 1000, 15609, 15641 )
    ( 1000, 24990, 25010 )
    ( 1000, 31242, 31258 )
    ( 1000, 49995, 50005 )
    ( 1000, 62496, 62504 )
    ( 1000, 124998, 125002 )
    ( 1000, 249999, 250001 )
    ( 1001, 2880, 3049 )
    ( 1001, 3432, 3575 )
    ( 1001, 4080, 4201 )
    ( 1001, 5460, 5551 )
    ( 1001, 6468, 6545 )
    ( 1001, 10200, 10249 )
    ( 1001, 38532, 38545 )
    ( 1001, 45540, 45551 )
    ( 1001, 71568, 71575 )
    ( 1001, 501000, 501001 )
    ( 1002, 1336, 1670 )
    ( 1002, 27880, 27898 )
    ( 1002, 83664, 83670 )
    ( 1002, 251000, 251002 )
    ( 1003, 1596, 1885 )
    ( 1003, 8496, 8555 )
    ( 1003, 29580, 29597 )
    ( 1003, 503004, 503005 )
    ( 1004, 62997, 63005 )
    ( 1004, 126000, 126004 )
    ( 1004, 252003, 252005 )
    ( 1005, 1340, 1675 )
    ( 1005, 2132, 2357 )
    ( 1005, 2412, 2613 )
    ( 1005, 6696, 6771 )
    ( 1005, 7504, 7571 )
    ( 1005, 11200, 11245 )
    ( 1005, 20188, 20213 )
    ( 1005, 33660, 33675 )
    ( 1005, 56108, 56117 )
    ( 1005, 101000, 101005 )
    ( 1005, 168336, 168339 )
    ( 1005, 505012, 505013 )


    ( 9999, 13332, 16665 )
    ( 9999, 13668, 16935 )
    ( 9999, 16968, 19695 )
    ( 9999, 44440, 45551 )
    ( 9999, 45360, 46449 )
    ( 9999, 54540, 55449 )
    ( 9999, 55660, 56551 )
    ( 9999, 137532, 137895 )
    ( 9999, 164832, 165135 )
    ( 9999, 168168, 168465 )
    ( 9999, 413080, 413201 )
    ( 9999, 494900, 495001 )
    ( 9999, 504900, 504999 )
    ( 9999, 617120, 617201 )
    ( 9999, 1514832, 1514865 )
    ( 9999, 1851468, 1851495 )
    ( 9999, 4544540, 4544551 )
    ( 9999, 5554440, 5554449 )
    ( 9999, 16663332, 16663335 )
    ( 9999, 49990000, 49990001 )

    ( 10000, 10500, 14500 )
    ( 10000, 14025, 17225 )
    ( 10000, 18750, 21250 )
    ( 10000, 24000, 26000 )
    ( 10000, 30450, 32050 )
    ( 10000, 39375, 40625 )
    ( 10000, 49500, 50500 )
    ( 10000, 62100, 62900 )
    ( 10000, 77805, 78445 )
    ( 10000, 99750, 100250 )
    ( 10000, 124800, 125200 )
    ( 10000, 156090, 156410 )
    ( 10000, 199875, 200125 )
    ( 10000, 249900, 250100 )
    ( 10000, 312420, 312580 )
    ( 10000, 390561, 390689 )
    ( 10000, 499950, 500050 )
    ( 10000, 624960, 625040 )
    ( 10000, 781218, 781282 )
    ( 10000, 999975, 1000025 )
    ( 10000, 1249980, 1250020 )
    ( 10000, 1562484, 1562516 )
    ( 10000, 2499990, 2500010 )
    ( 10000, 3124992, 3125008 )
    ( 10000, 4999995, 5000005 )
    ( 10000, 6249996, 6250004 )
    ( 10000, 12499998, 12500002 )
    ( 10000, 24999999, 25000001 )

    ( 10001, 364968, 365105 )
    ( 10001, 685032, 685105 )
    ( 10001, 50010000, 50010001 )

    ( 10002, 13336, 16670 )
    ( 10002, 2778880, 2778898 )
    ( 10002, 8336664, 8336670 )
    ( 10002, 25010000, 25010002 )


    ( 10003, 34296, 35725 )
    ( 10003, 1020996, 1021045 )
    ( 10003, 7147140, 7147147 ) --------------------
    ( 10003, 50030004, 50030005 )

    ( 10004, 13203, 16565 )
    ( 10004, 102297, 102785 )
    ( 10004, 152397, 152725 )
    ( 10004, 204960, 205204 )
    ( 10004, 305040, 305204 )
    ( 10004, 410103, 410225 )
    ( 10004, 610203, 610285 )
    ( 10004, 6254997, 6255005 )

    ( 10004, 12510000, 12510004 ) ------------------
    ( 10004, 25020003, 25020005 )

    ( 10005, 13340, 16675 )
    ( 10005, 17600, 20245 )
    ( 10005, 18576, 21099 )
    ( 10005, 21924, 24099 )
    ( 10005, 24012, 26013 )
    ( 10005, 28152, 29877 )
    ( 10005, 30744, 32331 )
    ( 10005, 37700, 39005 )
    ( 10005, 47840, 48875 )
    ( 10005, 59092, 59933 )
    ( 10005, 68672, 69397 )
    ( 10005, 74704, 75371 )
    ( 10005, 86756, 87331 )
    ( 10005, 94348, 94877 )
    ( 10005, 114840, 115275 )
    ( 10005, 144900, 145245 )
    ( 10005, 191632, 191893 )
    ( 10005, 222332, 222557 )
    ( 10005, 241684, 241891 )
    ( 10005, 345100, 345245 )
    ( 10005, 435160, 435275 )
    ( 10005, 575244, 575331 )
    ( 10005, 667296, 667371 )
    ( 10005, 725328, 725397 )
    ( 10005, 1112200, 1112245 )
    ( 10005, 1725848, 1725877 )
    ( 10005, 2001988, 2002013 )
    ( 10005, 2176076, 2176099 )
    ( 10005, 3336660, 3336675 )
    ( 10005, 5561108, 5561117 )
    ( 10005, 10010000, 10010005 )
    ( 10005, 16683336, 16683339 )
    ( 10005, 50050012, 50050013 )

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From henhanna@gmail.com@21:1/5 to Jonathan Dushoff on Tue Jun 21 10:23:12 2022
    On Tuesday, June 21, 2022 at 9:20:25 AM UTC-7, Jonathan Dushoff wrote:
    If you're interested in these patterns, you might like this picture of the triples that I made a few years ago http://dushoff.github.io/notebook/pythagoras.html.


    thanks!
    (for pedagogical reasons) or for pedagogical purposes,
    students would want to see a graph showing the first 5 or the first 10 plot- points.



    (load "pyth.lsp")

    ( 3, 4, 5 )

    ( 5, 12, 13 )

    ( 6, 8, 10 )

    ( 7, 24, 25 )

    ( 8, 15, 17 )

    ( 9, 12, 15 )
    ( 9, 40, 41 )

    ( 10, 24, 26 )

    ( 11, 60, 61 )

    ( 12, 16, 20 )
    ( 12, 35, 37 )

    ( 13, 84, 85 )

    ( 14, 48, 50 )

    ( 15, 20, 25 )
    ( 15, 36, 39 )
    ( 15, 112, 113 )

    ( 16, 30, 34 )
    ( 16, 63, 65 )

    ( 17, 144, 145 )

    ( 18, 24, 30 )
    ( 18, 80, 82 )

    ( 19, 180, 181 )

    ( 20, 21, 29 )
    ( 20, 48, 52 )
    ( 20, 99, 101 )

    ( 21, 28, 35 )
    ( 21, 72, 75 )
    ( 21, 220, 221 )

    ( 22, 120, 122 )

    ( 23, 264, 265 )

    ( 24, 32, 40 )
    ( 24, 45, 51 )
    ( 24, 70, 74 )
    ( 24, 143, 145 )

    ( 25, 60, 65 )
    ( 25, 312, 313 )

    ( 26, 168, 170 )

    ( 27, 36, 45 )
    ( 27, 120, 123 )
    ( 27, 364, 365 )

    ( 28, 45, 53 )
    ( 28, 96, 100 )
    ( 28, 195, 197 )

    ( 29, 420, 421 )

    ( 30, 40, 50 )
    ( 30, 72, 78 )
    ( 30, 224, 226 )

    ( 31, 480, 481 )

    ( 32, 60, 68 )
    ( 32, 126, 130 )
    ( 32, 255, 257 )

    ( 33, 44, 55 )
    ( 33, 56, 65 )
    ( 33, 180, 183 )
    ( 33, 544, 545 )

    ( 34, 288, 290 )

    ( 35, 84, 91 )
    ( 35, 120, 125 )
    ( 35, 612, 613 )

    ( 36, 48, 60 )
    ( 36, 77, 85 )
    ( 36, 105, 111 )
    ( 36, 160, 164 )
    ( 36, 323, 325 )

    ( 37, 684, 685 )

    ( 38, 360, 362 )

    ( 39, 52, 65 )
    ( 39, 80, 89 )
    ( 39, 252, 255 )
    ( 39, 760, 761 )

    ( 40, 42, 58 )
    ( 40, 75, 85 )
    ( 40, 96, 104 )
    ( 40, 198, 202 )
    ( 40, 399, 401 )

    ( 41, 840, 841 )

    ( 42, 56, 70 )
    ( 42, 144, 150 )
    ( 42, 440, 442 )

    ( 43, 924, 925 )

    ( 44, 117, 125 )
    ( 44, 240, 244 )
    ( 44, 483, 485 )

    ( 45, 60, 75 )
    ( 45, 108, 117 )
    ( 45, 200, 205 )
    ( 45, 336, 339 )
    ( 45, 1012, 1013 )

    ( 46, 528, 530 )

    ( 47, 1104, 1105 )

    ( 48, 55, 73 )
    ( 48, 64, 80 )
    ( 48, 90, 102 )
    ( 48, 140, 148 )
    ( 48, 189, 195 )
    ( 48, 286, 290 )
    ( 48, 575, 577 )

    ( 49, 168, 175 )
    ( 49, 1200, 1201 )

    ( 50, 120, 130 )
    ( 50, 624, 626 )

    ( 51, 68, 85 )
    ( 51, 140, 149 )
    ( 51, 432, 435 )
    ( 51, 1300, 1301 )

    ( 52, 165, 173 )
    ( 52, 336, 340 )
    ( 52, 675, 677 )

    ( 53, 1404, 1405 )

    ( 54, 72, 90 )
    ( 54, 240, 246 )
    ( 54, 728, 730 )

    ( 55, 132, 143 )
    ( 55, 300, 305 )
    ( 55, 1512, 1513 )

    ( 56, 90, 106 )
    ( 56, 105, 119 )
    ( 56, 192, 200 )
    ( 56, 390, 394 )
    ( 56, 783, 785 )

    ( 57, 76, 95 )
    ( 57, 176, 185 )
    ( 57, 540, 543 )
    ( 57, 1624, 1625 )

    ( 58, 840, 842 )

    ( 59, 1740, 1741 )

    ( 60, 63, 87 )
    ( 60, 80, 100 )
    ( 60, 91, 109 )
    ( 60, 144, 156 )
    ( 60, 175, 185 )
    ( 60, 221, 229 )
    ( 60, 297, 303 )
    ( 60, 448, 452 )
    ( 60, 899, 901 )

    ( 61, 1860, 1861 )

    ( 62, 960, 962 )

    ( 63, 84, 105 )
    ( 63, 216, 225 )
    ( 63, 280, 287 )
    ( 63, 660, 663 )
    ( 63, 1984, 1985 )

    ( 64, 120, 136 )
    ( 64, 252, 260 )
    ( 64, 510, 514 )
    ( 64, 1023, 1025 )

    ( 65, 72, 97 )
    ( 65, 156, 169 )
    ( 65, 420, 425 )
    ( 65, 2112, 2113 )

    ( 66, 88, 110 )
    ( 66, 112, 130 )
    ( 66, 360, 366 )
    ( 66, 1088, 1090 )

    ( 67, 2244, 2245 )

    ( 68, 285, 293 )
    ( 68, 576, 580 )
    ( 68, 1155, 1157 )

    ( 69, 92, 115 )
    ( 69, 260, 269 )
    ( 69, 792, 795 )
    ( 69, 2380, 2381 )

    ( 70, 168, 182 )
    ( 70, 240, 250 )
    ( 70, 1224, 1226 )

    ( 71, 2520, 2521 )

    ( 72, 96, 120 )
    ( 72, 135, 153 )
    ( 72, 154, 170 )
    ( 72, 210, 222 )
    ( 72, 320, 328 )
    ( 72, 429, 435 )
    ( 72, 646, 650 )
    ( 72, 1295, 1297 )

    ( 73, 2664, 2665 )

    ( 74, 1368, 1370 )

    ( 75, 100, 125 )
    ( 75, 180, 195 )
    ( 75, 308, 317 )
    ( 75, 560, 565 )
    ( 75, 936, 939 )
    ( 75, 2812, 2813 )

    ( 76, 357, 365 )
    ( 76, 720, 724 )
    ( 76, 1443, 1445 )

    ( 77, 264, 275 )
    ( 77, 420, 427 )
    ( 77, 2964, 2965 )

    ( 78, 104, 130 )
    ( 78, 160, 178 )
    ( 78, 504, 510 )
    ( 78, 1520, 1522 )

    ( 79, 3120, 3121 )

    ( 80, 84, 116 )
    ( 80, 150, 170 )
    ( 80, 192, 208 )
    ( 80, 315, 325 )
    ( 80, 396, 404 )
    ( 80, 798, 802 )
    ( 80, 1599, 1601 )

    ( 81, 108, 135 )
    ( 81, 360, 369 )
    ( 81, 1092, 1095 )
    ( 81, 3280, 3281 )

    ( 82, 1680, 1682 )

    ( 83, 3444, 3445 )

    ( 84, 112, 140 )
    ( 84, 135, 159 )
    ( 84, 187, 205 )
    ( 84, 245, 259 )
    ( 84, 288, 300 )
    ( 84, 437, 445 )
    ( 84, 585, 591 )
    ( 84, 880, 884 )
    ( 84, 1763, 1765 )

    ( 85, 132, 157 )
    ( 85, 204, 221 )
    ( 85, 720, 725 )
    ( 85, 3612, 3613 )

    ( 86, 1848, 1850 )

    ( 87, 116, 145 )
    ( 87, 416, 425 )
    ( 87, 1260, 1263 )
    ( 87, 3784, 3785 )

    ( 88, 105, 137 )
    ( 88, 165, 187 )
    ( 88, 234, 250 )
    ( 88, 480, 488 )
    ( 88, 966, 970 )
    ( 88, 1935, 1937 )

    ( 89, 3960, 3961 )

    ( 90, 120, 150 )
    ( 90, 216, 234 )
    ( 90, 400, 410 )
    ( 90, 672, 678 )
    ( 90, 2024, 2026 )

    ( 91, 312, 325 )
    ( 91, 588, 595 )
    ( 91, 4140, 4141 )

    ( 92, 525, 533 )
    ( 92, 1056, 1060 )
    ( 92, 2115, 2117 )

    ( 93, 124, 155 )
    ( 93, 476, 485 )
    ( 93, 1440, 1443 )
    ( 93, 4324, 4325 )

    ( 94, 2208, 2210 )

    ( 95, 168, 193 )
    ( 95, 228, 247 )
    ( 95, 900, 905 )
    ( 95, 4512, 4513 )

    ( 96, 110, 146 )
    ( 96, 128, 160 )
    ( 96, 180, 204 )
    ( 96, 247, 265 )
    ( 96, 280, 296 )
    ( 96, 378, 390 )
    ( 96, 572, 580 )
    ( 96, 765, 771 )
    ( 96, 1150, 1154 )
    ( 96, 2303, 2305 )

    ( 97, 4704, 4705 )

    ( 98, 336, 350 )
    ( 98, 2400, 2402 )

    ( 99, 132, 165 )
    ( 99, 168, 195 )
    ( 99, 440, 451 )
    ( 99, 540, 549 )
    ( 99, 1632, 1635 )
    ( 99, 4900, 4901 )

    ( 100, 105, 145 )
    ( 100, 240, 260 )
    ( 100, 495, 505 )
    ( 100, 621, 629 )
    ( 100, 1248, 1252 )
    ( 100, 2499, 2501 )

    ( 101, 5100, 5101 )

    ( 102, 136, 170 )
    ( 102, 280, 298 )
    ( 102, 864, 870 )
    ( 102, 2600, 2602 )

    ( 103, 5304, 5305 )

    ( 104, 153, 185 )
    ( 104, 195, 221 )
    ( 104, 330, 346 )
    ( 104, 672, 680 )
    ( 104, 1350, 1354 )
    ( 104, 2703, 2705 )

    ( 105, 140, 175 )
    ( 105, 208, 233 )
    ( 105, 252, 273 )
    ( 105, 360, 375 )
    ( 105, 608, 617 )
    ( 105, 784, 791 )
    ( 105, 1100, 1105 )
    ( 105, 1836, 1839 )
    ( 105, 5512, 5513 )



    ( 999, 1332, 1665 )
    ( 999, 1932, 2175 )
    ( 999, 4440, 4551 )
    ( 999, 6120, 6201 )
    ( 999, 13468, 13505 )
    ( 999, 18468, 18495 )
    ( 999, 55440, 55449 )
    ( 999, 166332, 166335 )
    ( 999, 499000, 499001 )

    ( 1000, 1050, 1450 )
    ( 1000, 1875, 2125 )
    ( 1000, 2400, 2600 )
    ( 1000, 3045, 3205 )
    ( 1000, 4950, 5050 )
    ( 1000, 6210, 6290 )
    ( 1000, 9975, 10025 )
    ( 1000, 12480, 12520 )
    ( 1000, 15609, 15641 )
    ( 1000, 24990, 25010 )
    ( 1000, 31242, 31258 )
    ( 1000, 49995, 50005 )
    ( 1000, 62496, 62504 )
    ( 1000, 124998, 125002 )
    ( 1000, 249999, 250001 )
    ( 1001, 2880, 3049 )
    ( 1001, 3432, 3575 )
    ( 1001, 4080, 4201 )
    ( 1001, 5460, 5551 )
    ( 1001, 6468, 6545 )
    ( 1001, 10200, 10249 )
    ( 1001, 38532, 38545 )
    ( 1001, 45540, 45551 )
    ( 1001, 71568, 71575 )
    ( 1001, 501000, 501001 )
    ( 1002, 1336, 1670 )
    ( 1002, 27880, 27898 )
    ( 1002, 83664, 83670 )
    ( 1002, 251000, 251002 )
    ( 1003, 1596, 1885 )
    ( 1003, 8496, 8555 )
    ( 1003, 29580, 29597 )
    ( 1003, 503004, 503005 )
    ( 1004, 62997, 63005 )
    ( 1004, 126000, 126004 )
    ( 1004, 252003, 252005 )
    ( 1005, 1340, 1675 )
    ( 1005, 2132, 2357 )
    ( 1005, 2412, 2613 )
    ( 1005, 6696, 6771 )
    ( 1005, 7504, 7571 )
    ( 1005, 11200, 11245 )
    ( 1005, 20188, 20213 )
    ( 1005, 33660, 33675 )
    ( 1005, 56108, 56117 )
    ( 1005, 101000, 101005 )
    ( 1005, 168336, 168339 )
    ( 1005, 505012, 505013 )


    ( 9999, 13332, 16665 )

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From leflynn@21:1/5 to henh...@gmail.com on Wed Jun 22 16:53:40 2022
    On Sunday, June 19, 2022 at 8:42:28 PM UTC-4, henh...@gmail.com wrote:
    On Sunday, June 19, 2022 at 4:08:59 PM UTC-7, Edward Murphy wrote:
    On 6/18/2022 11:56 AM, henh...@gmail.com wrote:

    (3,4,5) (5,12,13) ...

    i can ask HAL to give me 10 more or 100 more
    Pythagorean triples, but ... writing a program to search for them
    is rather hard to do... (i didn't even attempt it)
    Rather than searching, you could just use the method described here: https://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple
    and then determine individual upper bounds on m, n, and k (above which
    the hypotenuse is necessarily larger than the upper bound of your
    desired range).
    thanks.... i realized that searching is pretty easy to do...

    Some of the triples seem to contain "Twins"

    You do realize that one class of triples can be constructed by taking any odd number a=n
    together with b=(n*n-1)/2 and c=b+1 .
    L. Flynn

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Jonathan Dushoff@21:1/5 to henh...@gmail.com on Fri Jun 24 11:14:50 2022
    Thanks!

    Doing that made me notice that I put the code together in a big hurry, and was only finding triples where c is itself a sum of squares (which excludes things like (9, 12, 15) where c is the product of a sum of square and and a non-SOS factor). The whole
    thing has become a bit of a rabbit hole for me, but here is a possibly pedagogical plot.

    http://dushoff.github.io/notebook/outputs/rp.newpyth.Rout.pdf

    On Tuesday, June 21, 2022 at 1:23:15 PM UTC-4, henh...@gmail.com wrote:
    On Tuesday, June 21, 2022 at 9:20:25 AM UTC-7, Jonathan Dushoff wrote:
    If you're interested in these patterns, you might like this picture of the triples that I made a few years ago http://dushoff.github.io/notebook/pythagoras.html.
    thanks!
    (for pedagogical reasons) or for pedagogical purposes,
    students would want to see a graph showing the first 5 or the first 10 plot- points.
    (load "pyth.lsp")

    ( 3, 4, 5 )

    ( 5, 12, 13 )

    ( 6, 8, 10 )

    ( 7, 24, 25 )

    ( 8, 15, 17 )

    ( 9, 12, 15 )
    ( 9, 40, 41 )

    ( 10, 24, 26 )

    ( 11, 60, 61 )

    ( 12, 16, 20 )
    ( 12, 35, 37 )

    ( 13, 84, 85 )

    ( 14, 48, 50 )

    ( 15, 20, 25 )
    ( 15, 36, 39 )
    ( 15, 112, 113 )

    ( 16, 30, 34 )
    ( 16, 63, 65 )

    ( 17, 144, 145 )

    ( 18, 24, 30 )
    ( 18, 80, 82 )

    ( 19, 180, 181 )

    ( 20, 21, 29 )
    ( 20, 48, 52 )
    ( 20, 99, 101 )

    ( 21, 28, 35 )
    ( 21, 72, 75 )
    ( 21, 220, 221 )

    ( 22, 120, 122 )

    ( 23, 264, 265 )

    ( 24, 32, 40 )
    ( 24, 45, 51 )
    ( 24, 70, 74 )
    ( 24, 143, 145 )

    ( 25, 60, 65 )
    ( 25, 312, 313 )

    ( 26, 168, 170 )

    ( 27, 36, 45 )
    ( 27, 120, 123 )
    ( 27, 364, 365 )

    ( 28, 45, 53 )
    ( 28, 96, 100 )
    ( 28, 195, 197 )

    ( 29, 420, 421 )

    ( 30, 40, 50 )
    ( 30, 72, 78 )
    ( 30, 224, 226 )

    ( 31, 480, 481 )

    ( 32, 60, 68 )
    ( 32, 126, 130 )
    ( 32, 255, 257 )

    ( 33, 44, 55 )
    ( 33, 56, 65 )
    ( 33, 180, 183 )
    ( 33, 544, 545 )

    ( 34, 288, 290 )

    ( 35, 84, 91 )
    ( 35, 120, 125 )
    ( 35, 612, 613 )

    ( 36, 48, 60 )
    ( 36, 77, 85 )
    ( 36, 105, 111 )
    ( 36, 160, 164 )
    ( 36, 323, 325 )

    ( 37, 684, 685 )

    ( 38, 360, 362 )

    ( 39, 52, 65 )
    ( 39, 80, 89 )
    ( 39, 252, 255 )
    ( 39, 760, 761 )

    ( 40, 42, 58 )
    ( 40, 75, 85 )
    ( 40, 96, 104 )
    ( 40, 198, 202 )
    ( 40, 399, 401 )

    ( 41, 840, 841 )

    ( 42, 56, 70 )
    ( 42, 144, 150 )
    ( 42, 440, 442 )

    ( 43, 924, 925 )

    ( 44, 117, 125 )
    ( 44, 240, 244 )
    ( 44, 483, 485 )

    ( 45, 60, 75 )
    ( 45, 108, 117 )
    ( 45, 200, 205 )
    ( 45, 336, 339 )
    ( 45, 1012, 1013 )

    ( 46, 528, 530 )

    ( 47, 1104, 1105 )

    ( 48, 55, 73 )
    ( 48, 64, 80 )
    ( 48, 90, 102 )
    ( 48, 140, 148 )
    ( 48, 189, 195 )
    ( 48, 286, 290 )
    ( 48, 575, 577 )

    ( 49, 168, 175 )
    ( 49, 1200, 1201 )

    ( 50, 120, 130 )
    ( 50, 624, 626 )

    ( 51, 68, 85 )
    ( 51, 140, 149 )
    ( 51, 432, 435 )
    ( 51, 1300, 1301 )

    ( 52, 165, 173 )
    ( 52, 336, 340 )
    ( 52, 675, 677 )

    ( 53, 1404, 1405 )

    ( 54, 72, 90 )
    ( 54, 240, 246 )
    ( 54, 728, 730 )

    ( 55, 132, 143 )
    ( 55, 300, 305 )
    ( 55, 1512, 1513 )

    ( 56, 90, 106 )
    ( 56, 105, 119 )
    ( 56, 192, 200 )
    ( 56, 390, 394 )
    ( 56, 783, 785 )

    ( 57, 76, 95 )
    ( 57, 176, 185 )
    ( 57, 540, 543 )
    ( 57, 1624, 1625 )

    ( 58, 840, 842 )

    ( 59, 1740, 1741 )

    ( 60, 63, 87 )
    ( 60, 80, 100 )
    ( 60, 91, 109 )
    ( 60, 144, 156 )
    ( 60, 175, 185 )
    ( 60, 221, 229 )
    ( 60, 297, 303 )
    ( 60, 448, 452 )
    ( 60, 899, 901 )

    ( 61, 1860, 1861 )

    ( 62, 960, 962 )

    ( 63, 84, 105 )
    ( 63, 216, 225 )
    ( 63, 280, 287 )
    ( 63, 660, 663 )
    ( 63, 1984, 1985 )

    ( 64, 120, 136 )
    ( 64, 252, 260 )
    ( 64, 510, 514 )
    ( 64, 1023, 1025 )

    ( 65, 72, 97 )
    ( 65, 156, 169 )
    ( 65, 420, 425 )
    ( 65, 2112, 2113 )

    ( 66, 88, 110 )
    ( 66, 112, 130 )
    ( 66, 360, 366 )
    ( 66, 1088, 1090 )

    ( 67, 2244, 2245 )

    ( 68, 285, 293 )
    ( 68, 576, 580 )
    ( 68, 1155, 1157 )

    ( 69, 92, 115 )
    ( 69, 260, 269 )
    ( 69, 792, 795 )
    ( 69, 2380, 2381 )

    ( 70, 168, 182 )
    ( 70, 240, 250 )
    ( 70, 1224, 1226 )

    ( 71, 2520, 2521 )

    ( 72, 96, 120 )
    ( 72, 135, 153 )
    ( 72, 154, 170 )
    ( 72, 210, 222 )
    ( 72, 320, 328 )
    ( 72, 429, 435 )
    ( 72, 646, 650 )
    ( 72, 1295, 1297 )

    ( 73, 2664, 2665 )

    ( 74, 1368, 1370 )

    ( 75, 100, 125 )
    ( 75, 180, 195 )
    ( 75, 308, 317 )
    ( 75, 560, 565 )
    ( 75, 936, 939 )
    ( 75, 2812, 2813 )

    ( 76, 357, 365 )
    ( 76, 720, 724 )
    ( 76, 1443, 1445 )

    ( 77, 264, 275 )
    ( 77, 420, 427 )
    ( 77, 2964, 2965 )

    ( 78, 104, 130 )
    ( 78, 160, 178 )
    ( 78, 504, 510 )
    ( 78, 1520, 1522 )

    ( 79, 3120, 3121 )

    ( 80, 84, 116 )
    ( 80, 150, 170 )
    ( 80, 192, 208 )
    ( 80, 315, 325 )
    ( 80, 396, 404 )
    ( 80, 798, 802 )
    ( 80, 1599, 1601 )

    ( 81, 108, 135 )
    ( 81, 360, 369 )
    ( 81, 1092, 1095 )
    ( 81, 3280, 3281 )

    ( 82, 1680, 1682 )

    ( 83, 3444, 3445 )

    ( 84, 112, 140 )
    ( 84, 135, 159 )
    ( 84, 187, 205 )
    ( 84, 245, 259 )
    ( 84, 288, 300 )
    ( 84, 437, 445 )
    ( 84, 585, 591 )
    ( 84, 880, 884 )
    ( 84, 1763, 1765 )

    ( 85, 132, 157 )
    ( 85, 204, 221 )
    ( 85, 720, 725 )
    ( 85, 3612, 3613 )

    ( 86, 1848, 1850 )

    ( 87, 116, 145 )
    ( 87, 416, 425 )
    ( 87, 1260, 1263 )
    ( 87, 3784, 3785 )

    ( 88, 105, 137 )
    ( 88, 165, 187 )
    ( 88, 234, 250 )
    ( 88, 480, 488 )
    ( 88, 966, 970 )
    ( 88, 1935, 1937 )

    ( 89, 3960, 3961 )

    ( 90, 120, 150 )
    ( 90, 216, 234 )
    ( 90, 400, 410 )
    ( 90, 672, 678 )
    ( 90, 2024, 2026 )

    ( 91, 312, 325 )
    ( 91, 588, 595 )
    ( 91, 4140, 4141 )

    ( 92, 525, 533 )
    ( 92, 1056, 1060 )
    ( 92, 2115, 2117 )

    ( 93, 124, 155 )
    ( 93, 476, 485 )
    ( 93, 1440, 1443 )
    ( 93, 4324, 4325 )

    ( 94, 2208, 2210 )

    ( 95, 168, 193 )
    ( 95, 228, 247 )
    ( 95, 900, 905 )
    ( 95, 4512, 4513 )

    ( 96, 110, 146 )
    ( 96, 128, 160 )
    ( 96, 180, 204 )
    ( 96, 247, 265 )
    ( 96, 280, 296 )
    ( 96, 378, 390 )
    ( 96, 572, 580 )
    ( 96, 765, 771 )
    ( 96, 1150, 1154 )
    ( 96, 2303, 2305 )

    ( 97, 4704, 4705 )

    ( 98, 336, 350 )
    ( 98, 2400, 2402 )

    ( 99, 132, 165 )
    ( 99, 168, 195 )
    ( 99, 440, 451 )
    ( 99, 540, 549 )
    ( 99, 1632, 1635 )
    ( 99, 4900, 4901 )

    ( 100, 105, 145 )
    ( 100, 240, 260 )
    ( 100, 495, 505 )
    ( 100, 621, 629 )
    ( 100, 1248, 1252 )
    ( 100, 2499, 2501 )

    ( 101, 5100, 5101 )

    ( 102, 136, 170 )
    ( 102, 280, 298 )
    ( 102, 864, 870 )
    ( 102, 2600, 2602 )

    ( 103, 5304, 5305 )

    ( 104, 153, 185 )
    ( 104, 195, 221 )
    ( 104, 330, 346 )
    ( 104, 672, 680 )
    ( 104, 1350, 1354 )
    ( 104, 2703, 2705 )

    ( 105, 140, 175 )
    ( 105, 208, 233 )
    ( 105, 252, 273 )
    ( 105, 360, 375 )
    ( 105, 608, 617 )
    ( 105, 784, 791 )
    ( 105, 1100, 1105 )
    ( 105, 1836, 1839 )
    ( 105, 5512, 5513 )



    ( 999, 1332, 1665 )
    ( 999, 1932, 2175 )
    ( 999, 4440, 4551 )
    ( 999, 6120, 6201 )
    ( 999, 13468, 13505 )
    ( 999, 18468, 18495 )
    ( 999, 55440, 55449 )
    ( 999, 166332, 166335 )
    ( 999, 499000, 499001 )

    ( 1000, 1050, 1450 )
    ( 1000, 1875, 2125 )
    ( 1000, 2400, 2600 )
    ( 1000, 3045, 3205 )
    ( 1000, 4950, 5050 )
    ( 1000, 6210, 6290 )
    ( 1000, 9975, 10025 )
    ( 1000, 12480, 12520 )
    ( 1000, 15609, 15641 )
    ( 1000, 24990, 25010 )
    ( 1000, 31242, 31258 )
    ( 1000, 49995, 50005 )
    ( 1000, 62496, 62504 )
    ( 1000, 124998, 125002 )
    ( 1000, 249999, 250001 )
    ( 1001, 2880, 3049 )
    ( 1001, 3432, 3575 )
    ( 1001, 4080, 4201 )
    ( 1001, 5460, 5551 )
    ( 1001, 6468, 6545 )
    ( 1001, 10200, 10249 )
    ( 1001, 38532, 38545 )
    ( 1001, 45540, 45551 )
    ( 1001, 71568, 71575 )
    ( 1001, 501000, 501001 )
    ( 1002, 1336, 1670 )
    ( 1002, 27880, 27898 )
    ( 1002, 83664, 83670 )
    ( 1002, 251000, 251002 )
    ( 1003, 1596, 1885 )
    ( 1003, 8496, 8555 )
    ( 1003, 29580, 29597 )
    ( 1003, 503004, 503005 )
    ( 1004, 62997, 63005 )
    ( 1004, 126000, 126004 )
    ( 1004, 252003, 252005 )
    ( 1005, 1340, 1675 )
    ( 1005, 2132, 2357 )
    ( 1005, 2412, 2613 )
    ( 1005, 6696, 6771 )
    ( 1005, 7504, 7571 )
    ( 1005, 11200, 11245 )
    ( 1005, 20188, 20213 )
    ( 1005, 33660, 33675 )
    ( 1005, 56108, 56117 )
    ( 1005, 101000, 101005 )
    ( 1005, 168336, 168339 )
    ( 1005, 505012, 505013 )


    ( 9999, 13332, 16665 )

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From henhanna@gmail.com@21:1/5 to Jonathan Dushoff on Fri Jun 24 19:09:20 2022
    All possible pythagorean triples, visualized

    3,086,907 views -- May 26, 2017

    https://www.youtube.com/watch?v=QJYmyhnaaek

    i found this 20 min. ago....

    watching these clips by 3Blue1Brown (4.59M subscribers) ...
    i often wonder ... Will these clips make Martin-Gardner (like) articles obsolete (forgotten) ?



    On Friday, June 24, 2022 at 11:14:52 AM UTC-7, Jonathan Dushoff wrote:
    Thanks!

    Doing that made me notice that I put the code together in a big hurry, and was only finding triples where c is itself a sum of squares (which excludes things like (9, 12, 15) where c is the product of a sum of square and and a non-SOS factor). The
    whole thing has become a bit of a rabbit hole for me, but here is a possibly pedagogical plot.

    http://dushoff.github.io/notebook/outputs/rp.newpyth.Rout.pdf
    On Tuesday, June 21, 2022 at 1:23:15 PM UTC-4, henh...@gmail.com wrote:
    On Tuesday, June 21, 2022 at 9:20:25 AM UTC-7, Jonathan Dushoff wrote:
    If you're interested in these patterns, you might like this picture of the triples that I made a few years ago http://dushoff.github.io/notebook/pythagoras.html.
    thanks!
    (for pedagogical reasons) or for pedagogical purposes,
    students would want to see a graph showing the first 5 or the first 10 plot- points.
    (load "pyth.lsp")

    ( 3, 4, 5 )

    ( 5, 12, 13 )

    ( 6, 8, 10 )

    ( 7, 24, 25 )

    ( 8, 15, 17 )

    ( 9, 12, 15 )
    ( 9, 40, 41 )

    ( 10, 24, 26 )

    ( 11, 60, 61 )

    ( 12, 16, 20 )
    ( 12, 35, 37 )

    ( 13, 84, 85 )

    ( 14, 48, 50 )

    ( 15, 20, 25 )
    ( 15, 36, 39 )
    ( 15, 112, 113 )

    ( 16, 30, 34 )
    ( 16, 63, 65 )

    ( 17, 144, 145 )

    ( 18, 24, 30 )
    ( 18, 80, 82 )

    ( 19, 180, 181 )

    ( 20, 21, 29 )
    ( 20, 48, 52 )
    ( 20, 99, 101 )

    ( 21, 28, 35 )
    ( 21, 72, 75 )
    ( 21, 220, 221 )

    ( 22, 120, 122 )

    ( 23, 264, 265 )

    ( 24, 32, 40 )
    ( 24, 45, 51 )
    ( 24, 70, 74 )
    ( 24, 143, 145 )

    ( 25, 60, 65 )
    ( 25, 312, 313 )

    ( 26, 168, 170 )

    ( 27, 36, 45 )
    ( 27, 120, 123 )
    ( 27, 364, 365 )

    ( 28, 45, 53 )
    ( 28, 96, 100 )
    ( 28, 195, 197 )

    ( 29, 420, 421 )

    ( 30, 40, 50 )
    ( 30, 72, 78 )
    ( 30, 224, 226 )

    ( 31, 480, 481 )

    ( 32, 60, 68 )
    ( 32, 126, 130 )
    ( 32, 255, 257 )

    ( 33, 44, 55 )
    ( 33, 56, 65 )
    ( 33, 180, 183 )
    ( 33, 544, 545 )

    ( 34, 288, 290 )

    ( 35, 84, 91 )
    ( 35, 120, 125 )
    ( 35, 612, 613 )

    ( 36, 48, 60 )
    ( 36, 77, 85 )
    ( 36, 105, 111 )
    ( 36, 160, 164 )
    ( 36, 323, 325 )

    ( 37, 684, 685 )

    ( 38, 360, 362 )

    ( 39, 52, 65 )
    ( 39, 80, 89 )
    ( 39, 252, 255 )
    ( 39, 760, 761 )

    ( 40, 42, 58 )
    ( 40, 75, 85 )
    ( 40, 96, 104 )
    ( 40, 198, 202 )
    ( 40, 399, 401 )

    ( 41, 840, 841 )

    ( 42, 56, 70 )
    ( 42, 144, 150 )
    ( 42, 440, 442 )

    ( 43, 924, 925 )

    ( 44, 117, 125 )
    ( 44, 240, 244 )
    ( 44, 483, 485 )

    ( 45, 60, 75 )
    ( 45, 108, 117 )
    ( 45, 200, 205 )
    ( 45, 336, 339 )
    ( 45, 1012, 1013 )

    ( 46, 528, 530 )

    ( 47, 1104, 1105 )

    ( 48, 55, 73 )
    ( 48, 64, 80 )
    ( 48, 90, 102 )
    ( 48, 140, 148 )
    ( 48, 189, 195 )
    ( 48, 286, 290 )
    ( 48, 575, 577 )

    ( 49, 168, 175 )
    ( 49, 1200, 1201 )

    ( 50, 120, 130 )
    ( 50, 624, 626 )

    ( 51, 68, 85 )
    ( 51, 140, 149 )
    ( 51, 432, 435 )
    ( 51, 1300, 1301 )

    ( 52, 165, 173 )
    ( 52, 336, 340 )
    ( 52, 675, 677 )

    ( 53, 1404, 1405 )

    ( 54, 72, 90 )
    ( 54, 240, 246 )
    ( 54, 728, 730 )

    ( 55, 132, 143 )
    ( 55, 300, 305 )
    ( 55, 1512, 1513 )

    ( 56, 90, 106 )
    ( 56, 105, 119 )
    ( 56, 192, 200 )
    ( 56, 390, 394 )
    ( 56, 783, 785 )

    ( 57, 76, 95 )
    ( 57, 176, 185 )
    ( 57, 540, 543 )
    ( 57, 1624, 1625 )

    ( 58, 840, 842 )

    ( 59, 1740, 1741 )

    ( 60, 63, 87 )
    ( 60, 80, 100 )
    ( 60, 91, 109 )
    ( 60, 144, 156 )
    ( 60, 175, 185 )
    ( 60, 221, 229 )
    ( 60, 297, 303 )
    ( 60, 448, 452 )
    ( 60, 899, 901 )

    ( 61, 1860, 1861 )

    ( 62, 960, 962 )

    ( 63, 84, 105 )
    ( 63, 216, 225 )
    ( 63, 280, 287 )
    ( 63, 660, 663 )
    ( 63, 1984, 1985 )

    ( 64, 120, 136 )
    ( 64, 252, 260 )
    ( 64, 510, 514 )
    ( 64, 1023, 1025 )

    ( 65, 72, 97 )
    ( 65, 156, 169 )
    ( 65, 420, 425 )
    ( 65, 2112, 2113 )

    ( 66, 88, 110 )
    ( 66, 112, 130 )
    ( 66, 360, 366 )
    ( 66, 1088, 1090 )

    ( 67, 2244, 2245 )

    ( 68, 285, 293 )
    ( 68, 576, 580 )
    ( 68, 1155, 1157 )

    ( 69, 92, 115 )
    ( 69, 260, 269 )
    ( 69, 792, 795 )
    ( 69, 2380, 2381 )

    ( 70, 168, 182 )
    ( 70, 240, 250 )
    ( 70, 1224, 1226 )

    ( 71, 2520, 2521 )

    ( 72, 96, 120 )
    ( 72, 135, 153 )
    ( 72, 154, 170 )
    ( 72, 210, 222 )
    ( 72, 320, 328 )
    ( 72, 429, 435 )
    ( 72, 646, 650 )
    ( 72, 1295, 1297 )

    ( 73, 2664, 2665 )

    ( 74, 1368, 1370 )

    ( 75, 100, 125 )
    ( 75, 180, 195 )
    ( 75, 308, 317 )
    ( 75, 560, 565 )
    ( 75, 936, 939 )
    ( 75, 2812, 2813 )

    ( 76, 357, 365 )
    ( 76, 720, 724 )
    ( 76, 1443, 1445 )

    ( 77, 264, 275 )
    ( 77, 420, 427 )
    ( 77, 2964, 2965 )

    ( 78, 104, 130 )
    ( 78, 160, 178 )
    ( 78, 504, 510 )
    ( 78, 1520, 1522 )

    ( 79, 3120, 3121 )

    ( 80, 84, 116 )
    ( 80, 150, 170 )
    ( 80, 192, 208 )
    ( 80, 315, 325 )
    ( 80, 396, 404 )
    ( 80, 798, 802 )
    ( 80, 1599, 1601 )

    ( 81, 108, 135 )
    ( 81, 360, 369 )
    ( 81, 1092, 1095 )
    ( 81, 3280, 3281 )

    ( 82, 1680, 1682 )

    ( 83, 3444, 3445 )

    ( 84, 112, 140 )
    ( 84, 135, 159 )
    ( 84, 187, 205 )
    ( 84, 245, 259 )
    ( 84, 288, 300 )
    ( 84, 437, 445 )
    ( 84, 585, 591 )
    ( 84, 880, 884 )
    ( 84, 1763, 1765 )

    ( 85, 132, 157 )
    ( 85, 204, 221 )
    ( 85, 720, 725 )
    ( 85, 3612, 3613 )

    ( 86, 1848, 1850 )

    ( 87, 116, 145 )
    ( 87, 416, 425 )
    ( 87, 1260, 1263 )
    ( 87, 3784, 3785 )

    ( 88, 105, 137 )
    ( 88, 165, 187 )
    ( 88, 234, 250 )
    ( 88, 480, 488 )
    ( 88, 966, 970 )
    ( 88, 1935, 1937 )

    ( 89, 3960, 3961 )

    ( 90, 120, 150 )
    ( 90, 216, 234 )
    ( 90, 400, 410 )
    ( 90, 672, 678 )
    ( 90, 2024, 2026 )

    ( 91, 312, 325 )
    ( 91, 588, 595 )
    ( 91, 4140, 4141 )

    ( 92, 525, 533 )
    ( 92, 1056, 1060 )
    ( 92, 2115, 2117 )

    ( 93, 124, 155 )
    ( 93, 476, 485 )
    ( 93, 1440, 1443 )
    ( 93, 4324, 4325 )

    ( 94, 2208, 2210 )

    ( 95, 168, 193 )
    ( 95, 228, 247 )
    ( 95, 900, 905 )
    ( 95, 4512, 4513 )

    ( 96, 110, 146 )
    ( 96, 128, 160 )
    ( 96, 180, 204 )
    ( 96, 247, 265 )
    ( 96, 280, 296 )
    ( 96, 378, 390 )
    ( 96, 572, 580 )
    ( 96, 765, 771 )
    ( 96, 1150, 1154 )
    ( 96, 2303, 2305 )

    ( 97, 4704, 4705 )

    ( 98, 336, 350 )
    ( 98, 2400, 2402 )

    ( 99, 132, 165 )
    ( 99, 168, 195 )
    ( 99, 440, 451 )
    ( 99, 540, 549 )
    ( 99, 1632, 1635 )
    ( 99, 4900, 4901 )

    ( 100, 105, 145 )
    ( 100, 240, 260 )
    ( 100, 495, 505 )
    ( 100, 621, 629 )
    ( 100, 1248, 1252 )
    ( 100, 2499, 2501 )

    ( 101, 5100, 5101 )

    ( 102, 136, 170 )
    ( 102, 280, 298 )
    ( 102, 864, 870 )
    ( 102, 2600, 2602 )

    ( 103, 5304, 5305 )

    ( 104, 153, 185 )
    ( 104, 195, 221 )
    ( 104, 330, 346 )
    ( 104, 672, 680 )
    ( 104, 1350, 1354 )
    ( 104, 2703, 2705 )

    ( 105, 140, 175 )
    ( 105, 208, 233 )
    ( 105, 252, 273 )
    ( 105, 360, 375 )
    ( 105, 608, 617 )
    ( 105, 784, 791 )
    ( 105, 1100, 1105 )
    ( 105, 1836, 1839 )
    ( 105, 5512, 5513 )



    ( 999, 1332, 1665 )
    ( 999, 1932, 2175 )
    ( 999, 4440, 4551 )
    ( 999, 6120, 6201 )
    ( 999, 13468, 13505 )
    ( 999, 18468, 18495 )
    ( 999, 55440, 55449 )
    ( 999, 166332, 166335 )
    ( 999, 499000, 499001 )

    ( 1000, 1050, 1450 )
    ( 1000, 1875, 2125 )
    ( 1000, 2400, 2600 )
    ( 1000, 3045, 3205 )
    ( 1000, 4950, 5050 )
    ( 1000, 6210, 6290 )
    ( 1000, 9975, 10025 )
    ( 1000, 12480, 12520 )
    ( 1000, 15609, 15641 )
    ( 1000, 24990, 25010 )
    ( 1000, 31242, 31258 )
    ( 1000, 49995, 50005 )
    ( 1000, 62496, 62504 )
    ( 1000, 124998, 125002 )
    ( 1000, 249999, 250001 )
    ( 1001, 2880, 3049 )
    ( 1001, 3432, 3575 )
    ( 1001, 4080, 4201 )
    ( 1001, 5460, 5551 )
    ( 1001, 6468, 6545 )
    ( 1001, 10200, 10249 )
    ( 1001, 38532, 38545 )
    ( 1001, 45540, 45551 )
    ( 1001, 71568, 71575 )
    ( 1001, 501000, 501001 )
    ( 1002, 1336, 1670 )
    ( 1002, 27880, 27898 )
    ( 1002, 83664, 83670 )
    ( 1002, 251000, 251002 )
    ( 1003, 1596, 1885 )
    ( 1003, 8496, 8555 )
    ( 1003, 29580, 29597 )
    ( 1003, 503004, 503005 )
    ( 1004, 62997, 63005 )
    ( 1004, 126000, 126004 )
    ( 1004, 252003, 252005 )
    ( 1005, 1340, 1675 )
    ( 1005, 2132, 2357 )
    ( 1005, 2412, 2613 )
    ( 1005, 6696, 6771 )
    ( 1005, 7504, 7571 )
    ( 1005, 11200, 11245 )
    ( 1005, 20188, 20213 )
    ( 1005, 33660, 33675 )
    ( 1005, 56108, 56117 )
    ( 1005, 101000, 101005 )
    ( 1005, 168336, 168339 )
    ( 1005, 505012, 505013 )


    ( 9999, 13332, 16665 )

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)