• Simplify trigonometric expressions

    From Peter Luschny@21:1/5 to All on Fri Aug 14 06:00:28 2015
    How can I teach Maple to simplify these expressions?
    I thought this would be peanuts for Maple
    (especially as it is peanuts for the competitor).

    [1], -(2/5)*cos((2/5)*Pi)+(2/5)*cos((1/5)*Pi)+x-1/5

    [2], (2/5)*cos((2/5)*Pi)-(4/5)*cos((2/5)*Pi)*x-(2/5)*cos((1/5)*Pi)+(4/5)*cos((1/5)*Pi)*x-(2/5)*x+x^2+1/5

    [3], -(6/5)*cos((2/5)*Pi)*x^2+(6/5)*cos((2/5)*Pi)*x-(2/5)*cos((2/5)*Pi)+(6/5)*cos((1/5)*Pi)*x^2-(6/5)*cos((1/5)*Pi)*x+(2/5)*cos((1/5)*Pi)+(3/5)*x-(3/5)*x^2+x^3-1/5

    [4], (2/5)*cos((2/5)*Pi)-(8/5)*cos((2/5)*Pi)*x^3+(12/5)*cos((2/5)*Pi)*x^2-(8/5)*cos((2/5)*Pi)*x-(2/5)*cos((1/5)*Pi)+(8/5)*cos((1/5)*Pi)*x^3-(12/5)*cos((1/5)*Pi)*x^2+(8/5)*cos((1/5)*Pi)*x-(4/5)*x+x^4+1/5-(4/5)*x^3+(6/5)*x^2

    [5], (x-1)*(1+2*cos((2/5)*Pi)*x^2-2*cos((2/5)*Pi)*x^3-2*cos((2/5)*Pi)*x-2*cos((1/5)*Pi)*x^2+2*cos((1/5)*Pi)*x^3+2*cos((1/5)*Pi)*x+2*x^2+x^4)

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Peter Luschny@21:1/5 to All on Fri Aug 14 09:37:48 2015
    How can I teach Maple to simplify these expressions?
    I thought this would be peanuts for Maple
    (especially as it is peanuts for the competitor).

    Depends on what one wants do have ... If L denotes
    the list of your equations then for example
    convert(L, radical):
    simplify(%);
    2 3 4 4 3 2
    [x, x , x , x , (x - 1) (x + x + x + x + 1)]

    Neat! I tried simplify and simplify-trig without success.
    Why do they not work?

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Peter Luschny@21:1/5 to Axel Vogt on Fri Aug 14 09:45:00 2015
    On Friday, August 14, 2015 at 4:02:34 PM UTC+2, Axel Vogt wrote:
    On 14.08.2015 15:00, Peter Luschny wrote:
    How can I teach Maple to simplify these expressions?
    I thought this would be peanuts for Maple
    (especially as it is peanuts for the competitor).

    ...

    Depends on what one wants do have ... If L denotes
    the list of your equations then for example

    convert(L, radical):
    simplify(%);

    OK. So what about these?

    [1] -1/7+x-(2/7)*cos((2/7)*Pi)+(2/7)*cos((3/7)*Pi)+(2/7)*cos((1/7)*Pi)

    [2] (4/7)*x*cos((1/7)*Pi)-(2/7)*cos((1/7)*Pi)-(4/7)*x*cos((2/7)*Pi)+(2/7)*cos((2/7)*Pi)+(4/7)*x*cos((3/7)*Pi)-(2/7)*cos((3/7)*Pi)+1/7-(2/7)*x+x^2

    [3] (2/7)*cos((1/7)*Pi)+(6/7)*x^2*cos((1/7)*Pi)-(6/7)*x*cos((1/7)*Pi)-(2/7)*cos((2/7)*Pi)-(6/7)*cos((2/7)*Pi)*x^2+(6/7)*x*cos((2/7)*Pi)+(2/7)*cos((3/7)*Pi)+(6/7)*x^2*cos((3/7)*Pi)-(6/7)*x*cos((3/7)*Pi)-1/7+(3/7)*x-(3/7)*x^2+x^3

    [4] -(2/7)*cos((1/7)*Pi)-(12/7)*x^2*cos((1/7)*Pi)+(8/7)*x*cos((1/7)*Pi)+(8/7)*x^3*cos((1/7)*Pi)-(8/7)*cos((2/7)*Pi)*x^3+(2/7)*cos((2/7)*Pi)+(12/7)*cos((2/7)*Pi)*x^2-(8/7)*x*cos((2/7)*Pi)-(2/7)*cos((3/7)*Pi)-(12/7)*x^2*cos((3/7)*Pi)+(8/7)*x*cos((3/7)*Pi)+(
    8/7)*x^3*cos((3/7)*Pi)+1/7-(4/7)*x+(6/7)*x^2-(4/7)*x^3+x^4

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Peter Luschny@21:1/5 to All on Fri Aug 14 12:39:33 2015
    convert(L, radical):
    simplify(%);
    OK. So what about these?

    Be warned, if you can solve this case (n=7) I will send in
    the next case (n=9) and Maple will never return form it.

    So we see a pattern: n=3 works with simplify, n=5 only with
    your special radical method, n=7 fails even with the radical
    method and n=9 is ending in nirvana.

    So there clearly is some insufficient implementation of these
    simplifications.

    Are these cases too complex? Or to specialized?

    Unfortunately the answer is no. We are talking about
    simplifications of sum of roots of unity (which your solution
    shows). Something I expect a good CAS can handle.

    Hi Maple developers, please take note. You mastered the
    even cases, now go for the odd cases also.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Axel Vogt@21:1/5 to Peter Luschny on Fri Aug 14 23:45:43 2015
    XPost: sci.math.symbolic

    On 14.08.2015 18:45, Peter Luschny wrote:
    On Friday, August 14, 2015 at 4:02:34 PM UTC+2, Axel Vogt wrote:
    On 14.08.2015 15:00, Peter Luschny wrote:
    How can I teach Maple to simplify these expressions?
    I thought this would be peanuts for Maple
    (especially as it is peanuts for the competitor).

    ...

    Depends on what one wants do have ... If L denotes
    the list of your equations then for example

    convert(L, radical):
    simplify(%);

    OK. So what about these?

    [1] -1/7+x-(2/7)*cos((2/7)*Pi)+(2/7)*cos((3/7)*Pi)+(2/7)*cos((1/7)*Pi)

    [2] (4/7)*x*cos((1/7)*Pi)-(2/7)*cos((1/7)*Pi)-(4/7)*x*cos((2/7)*Pi)+(2/7)*cos((2/7)*Pi)+(4/7)*x*cos((3/7)*Pi)-(2/7)*cos((3/7)*Pi)+1/7-(2/7)*x+x^2

    [3] (2/7)*cos((1/7)*Pi)+(6/7)*x^2*cos((1/7)*Pi)-(6/7)*x*cos((1/7)*Pi)-(2/7)*cos((2/7)*Pi)-(6/7)*cos((2/7)*Pi)*x^2+(6/7)*x*cos((2/7)*Pi)+(2/7)*cos((3/7)*Pi)+(6/7)*x^2*cos((3/7)*Pi)-(6/7)*x*cos((3/7)*Pi)-1/7+(3/7)*x-(3/7)*x^2+x^3

    [4] -(2/7)*cos((1/7)*Pi)-(12/7)*x^2*cos((1/7)*Pi)+(8/7)*x*cos((1/7)*Pi)+(8/7)*x^3*cos((1/7)*Pi)-(8/7)*cos((2/7)*Pi)*x^3+(2/7)*cos((2/7)*Pi)+(12/7)*cos((2/7)*Pi)*x^2-(8/7)*x*cos((2/7)*Pi)-(2/7)*cos((3/7)*Pi)-(12/7)*x^2*cos((3/7)*Pi)+(8/7)*x*cos((3/7)*Pi)
    +(8/7)*x^3*cos((3/7)*Pi)+1/7-(4/7)*x+(6/7)*x^2-(4/7)*x^3+x^4


    evalf[20](L): fnormal(%): identify(%); # to have a guess

    2 3 4
    [x, x , x , x ]

    convert(L, RootOf): # nun aber in echt ...
    simplify(%);
    2 3 4
    [x, x , x , x ]

    I think it is also "what is intended by simplify (and should trig
    survive)?" Thus I included sci.math.symbolic for further answers.

    PS: would you mind to post as list

    PPS: well, it may break down at some degree

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Peter Luschny@21:1/5 to All on Sat Aug 15 01:43:35 2015
    Am Freitag, 14. August 2015 23:45:53 UTC+2 schrieb Axel Vogt:
    evalf[20](L): fnormal(%): identify(%); # to have a guess

    2 3 4
    [x, x , x , x ]

    convert(L, RootOf): # nun aber in echt ...
    simplify(%);
    2 3 4
    [x, x , x , x ]

    I think it is also "what is intended by simplify (and should trig
    survive)?"

    Thank you Axel! "what is intended by simplify?" Exactly what you showed.

    PS: would you mind to post as list

    I think we need no further examples. As I said in my last post
    we are talking about sums of roots of unity (and their reciprocals)
    and I strongly believe these formulas should be handled by Maple
    whiteout further ingenuity on the side of the user.

    Otherwise I can save my money and use Wolfram Alpha ...

    http://www.wolframalpha.com/input/?i=%284%2F7%29*x*cos%28%281%2F7%29*Pi%29-%282%2F7%29*cos%28%281%2F7%29*Pi%29-%284%2F7%29*x*cos%28%282%2F7%29*Pi%29%2B%282%2F7%29*cos%28%282%2F7%29*Pi%29%2B%284%2F7%29*x*cos%28%283%2F7%29*Pi%29-%282%2F7%29*cos%28%283%2F7%
    29*Pi%29%2B1%2F7-%282%2F7%29*x%2Bx%5E2+

    See 'Alternate forms'.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Peter Luschny@21:1/5 to All on Wed Aug 19 11:19:41 2015
    Hi Martin!

    I expect the remainder to be handled in the same manner. But I don't see
    why Derive should not fail to simplify similar expressions whose trigonometric arguments involve larger denominators, as the rule to
    handle SIN(3*pi/14) - SIN(pi/14) is not generic.

    I include some further examples (array of expressions).

    case 7:

    [(10/7)*x^4*cos((1/7)*Pi)+(2/7)*cos((1/7)*Pi)+(20/7)*x^2*cos((1/7)*Pi)-(20/7)*x^3*cos((1/7)*Pi)-(10/7)*x*cos((1/7)*Pi)-(20/7)*cos((2/7)*Pi)*x^2-(10/7)*cos((2/7)*Pi)*x^4+(10/7)*x*cos((2/7)*Pi)-(2/7)*cos((2/7)*Pi)+(20/7)*cos((2/7)*Pi)*x^3+(10/7)*x^4*cos((3/
    7)*Pi)+(2/7)*cos((3/7)*Pi)+(20/7)*x^2*cos((3/7)*Pi)-(20/7)*x^3*cos((3/7)*Pi)-(10/7)*x*cos((3/7)*Pi)-1/7+(5/7)*x-(10/7)*x^2+(10/7)*x^3-(5/7)*x^4+x^5,
    -(6/7)*x+(15/7)*x^2-(20/7)*x^3+(15/7)*x^4-(6/7)*x^5+x^6+(30/7)*cos((2/7)*Pi)*x^4-(12/7)*cos((2/7)*Pi)*x^5-(30/7)*x^4*cos((3/7)*Pi)-(30/7)*x^4*cos((1/7)*Pi)-(2/7)*cos((3/7)*Pi)-(2/7)*cos((1/7)*Pi)-(12/7)*x*cos((2/7)*Pi)+1/7+(2/7)*cos((2/7)*Pi)-(30/7)*x^2*
    cos((3/7)*Pi)-(30/7)*x^2*cos((1/7)*Pi)+(40/7)*x^3*cos((1/7)*Pi)+(40/7)*x^3*cos((3/7)*Pi)+(12/7)*x*cos((3/7)*Pi)+(12/7)*x*cos((1/7)*Pi)+(12/7)*x^5*cos((3/7)*Pi)+(12/7)*x^5*cos((1/7)*Pi)-(40/7)*cos((2/7)*Pi)*x^3+(30/7)*cos((2/7)*Pi)*x^2];

    case 9:

    [x+((4/9)*I)*sin((1/9)*Pi)+((4/9)*I)*sin((2/9)*Pi)-(2/9)*cos((2/9)*Pi)-((4/9)*I)*sin((4/9)*Pi)+(2/9)*cos((1/9)*Pi)-(2/9)*cos((4/9)*Pi),
    (4/9)*x*cos((1/9)*Pi)-(2/9)*cos((1/9)*Pi)-(4/9)*cos((2/9)*Pi)*x+(2/9)*cos((2/9)*Pi)-(4/9)*x*cos((4/9)*Pi)+(2/9)*cos((4/9)*Pi)+((8/9)*I)*x*sin((1/9)*Pi)-((8/9)*I)*sin((1/9)*Pi)+((8/9)*I)*x*sin((2/9)*Pi)-((8/9)*I)*sin((2/9)*Pi)+((8/9)*I)*sin((4/9)*Pi)-((8/
    9)*I)*x*sin((4/9)*Pi)+x^2, ((4/3)*I)*sin((2/9)*Pi)*x^2-((8/3)*I)*x*sin((1/9)*Pi)-((8/3)*I)*x*sin((2/9)*Pi)-((4/3)*I)*sin((4/9)*Pi)+((8/3)*I)*x*sin((4/9)*Pi)+((4/3)*I)*x^2*sin((1/9)*Pi)-((4/3)*I)*x^2*sin((4/9)*Pi)+((4/3)*I)*sin((2/9)*Pi)+((4/3)*I)*sin((1/9)*Pi)-(2/3)*x*cos((1/9)*Pi)
    +(2/3)*x^2*cos((1/9)*Pi)+(2/3)*cos((2/9)*Pi)*x-(2/3)*cos((2/9)*Pi)*x^2+(2/3)*x*cos((4/9)*Pi)-(2/3)*x^2*cos((4/9)*Pi)+x^3,
    ((16/3)*I)*x*sin((1/9)*Pi)+((16/9)*I)*x^3*sin((1/9)*Pi)-((16/3)*I)*x*sin((4/9)*Pi)-((16/3)*I)*x^2*sin((1/9)*Pi)+((16/3)*I)*x^2*sin((4/9)*Pi)-((16/9)*I)*x^3*sin((4/9)*Pi)-((16/3)*I)*sin((2/9)*Pi)*x^2+((16/9)*I)*sin((2/9)*Pi)*x^3+((16/3)*I)*x*sin((2/9)*Pi)+
    ((16/9)*I)*sin((4/9)*Pi)-((16/9)*I)*sin((2/9)*Pi)-((16/9)*I)*sin((1/9)*Pi)+(8/9)*x^3*cos((1/9)*Pi)-(2/9)*cos((1/9)*Pi)-(4/3)*x^2*cos((1/9)*Pi)+(4/3)*cos((2/9)*Pi)*x^2+(2/9)*cos((2/9)*Pi)-(8/9)*cos((2/9)*Pi)*x^3+(4/3)*x^2*cos((4/9)*Pi)+(2/9)*cos((4/9)*Pi)-
    (8/9)*x^3*cos((4/9)*Pi)+x^4, x^5-(10/9)*cos((2/9)*Pi)*x^4+(20/9)*cos((2/9)*Pi)*x^3-(10/9)*x*cos((1/9)*Pi)+(10/9)*x*cos((4/9)*Pi)+(10/9)*cos((2/9)*Pi)*x+(20/9)*x^3*cos((4/9)*Pi)-(20/9)*x^3*cos((1/9)*Pi)-(2/9)*cos((2/9)*Pi)+((20/9)*I)*sin((2/9)*Pi)-((20/9)*I)*sin((4/9)*Pi)+((20/9)*I)*
    sin((1/9)*Pi)-((80/9)*I)*sin((2/9)*Pi)*x^3+((20/9)*I)*sin((2/9)*Pi)*x^4-((20/9)*I)*x^4*sin((4/9)*Pi)+((20/9)*I)*x^4*sin((1/9)*Pi)+((40/3)*I)*sin((2/9)*Pi)*x^2-((40/3)*I)*x^2*sin((4/9)*Pi)+((40/3)*I)*x^2*sin((1/9)*Pi)+((80/9)*I)*x^3*sin((4/9)*Pi)-((80/9)*
    I)*x^3*sin((1/9)*Pi)-((80/9)*I)*x*sin((2/9)*Pi)+((80/9)*I)*x*sin((4/9)*Pi)-((80/9)*I)*x*sin((1/9)*Pi)+(10/9)*x^4*cos((1/9)*Pi)-(10/9)*x^4*cos((4/9)*Pi)+(2/9)*cos((1/9)*Pi)-(2/9)*cos((4/9)*Pi)];

    case 11:

    [-1/11+x+(2/11)*cos((5/11)*Pi)+(2/11)*cos((1/11)*Pi)+(2/11)*cos((3/11)*Pi)-(2/11)*cos((4/11)*Pi)-(2/11)*cos((2/11)*Pi),
    -(2/11)*cos((1/11)*Pi)+(4/11)*x*cos((1/11)*Pi)+(2/11)*cos((2/11)*Pi)-(4/11)*cos((2/11)*Pi)*x-(2/11)*cos((3/11)*Pi)+(4/11)*x*cos((3/11)*Pi)+(2/11)*cos((4/11)*Pi)-(4/11)*x*cos((4/11)*Pi)-(2/11)*cos((5/11)*Pi)+(4/11)*x*cos((5/11)*Pi)+1/11-(2/11)*x+x^2,
    (2/11)*cos((1/11)*Pi)+(6/11)*x^2*cos((1/11)*Pi)-(6/11)*x*cos((1/11)*Pi)-(6/11)*cos((2/11)*Pi)*x^2-(2/11)*cos((2/11)*Pi)+(6/11)*cos((2/11)*Pi)*x+(2/11)*cos((3/11)*Pi)+(6/11)*x^2*cos((3/11)*Pi)-(6/11)*x*cos((3/11)*Pi)-(6/11)*x^2*cos((4/11)*Pi)-(2/11)*cos((
    4/11)*Pi)+(6/11)*x*cos((4/11)*Pi)+(2/11)*cos((5/11)*Pi)+(6/11)*x^2*cos((5/11)*Pi)-(6/11)*x*cos((5/11)*Pi)-1/11+(3/11)*x-(3/11)*x^2+x^3,
    -(4/11)*x+(6/11)*x^2-(4/11)*x^3+x^4-(8/11)*cos((2/11)*Pi)*x^3+(12/11)*cos((2/11)*Pi)*x^2-(8/11)*cos((2/11)*Pi)*x-(12/11)*x^2*cos((5/11)*Pi)+(12/11)*x^2*cos((4/11)*Pi)-(12/11)*x^2*cos((1/11)*Pi)-(12/11)*x^2*cos((3/11)*Pi)-(2/11)*cos((5/11)*Pi)-(2/11)*cos((
    1/11)*Pi)-(2/11)*cos((3/11)*Pi)+(2/11)*cos((4/11)*Pi)+(8/11)*x^3*cos((1/11)*Pi)+(8/11)*x^3*cos((3/11)*Pi)+(8/11)*x^3*cos((5/11)*Pi)-(8/11)*x^3*cos((4/11)*Pi)+1/11+(2/11)*cos((2/11)*Pi)-(8/11)*x*cos((4/11)*Pi)+(8/11)*x*cos((3/11)*Pi)+(8/11)*x*cos((1/11)*
    Pi)+(8/11)*x*cos((5/11)*Pi), (5/11)*x-(10/11)*x^2+(10/11)*x^3-(5/11)*x^4+x^5+(20/11)*cos((2/11)*Pi)*x^3-(20/11)*cos((2/11)*Pi)*x^2+(10/11)*cos((2/11)*Pi)*x-(10/11)*cos((2/11)*Pi)*x^4+(20/11)*x^2*cos((5/11)*Pi)-(20/11)*x^2*cos((4/11)*Pi)+(20/11)*x^2*cos((1/11)*Pi)+(20/11)*x^2*cos((3/
    11)*Pi)+(2/11)*cos((5/11)*Pi)+(2/11)*cos((1/11)*Pi)+(2/11)*cos((3/11)*Pi)-(2/11)*cos((4/11)*Pi)-(20/11)*x^3*cos((1/11)*Pi)-(20/11)*x^3*cos((3/11)*Pi)-(20/11)*x^3*cos((5/11)*Pi)+(20/11)*x^3*cos((4/11)*Pi)-(2/11)*cos((2/11)*Pi)-1/11+(10/11)*x^4*cos((5/11)*
    Pi)-(10/11)*x^4*cos((4/11)*Pi)+(10/11)*x^4*cos((3/11)*Pi)+(10/11)*x^4*cos((1/11)*Pi)+(10/11)*x*cos((4/11)*Pi)-(10/11)*x*cos((3/11)*Pi)-(10/11)*x*cos((1/11)*Pi)-(10/11)*x*cos((5/11)*Pi)];

    Can Rubi handle them?

    And: what is the _general_ reduction strategy?

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From clicliclic@freenet.de@21:1/5 to Axel Vogt on Wed Aug 19 14:59:24 2015
    XPost: sci.math.symbolic

    Axel Vogt schrieb:

    On 14.08.2015 18:45, Peter Luschny wrote:

    OK. So what about these?

    [1] -1/7+x-(2/7)*cos((2/7)*Pi)+(2/7)*cos((3/7)*Pi)+(2/7)*cos((1/7)*Pi)

    [2] (4/7)*x*cos((1/7)*Pi)-(2/7)*cos((1/7)*Pi)-(4/7)*x*cos((2/7)*Pi)+(2/7)*cos((2/7)*Pi)+(4/7)*x*cos((3/7)*Pi)-(2/7)*cos((3/7)*Pi)+1/7-(2/7)*x+x^2

    [3] (2/7)*cos((1/7)*Pi)+(6/7)*x^2*cos((1/7)*Pi)-(6/7)*x*cos((1/7)*Pi)-(2/7)*cos((2/7)*Pi)-(6/7)*cos((2/7)*Pi)*x^2+(6/7)*x*cos((2/7)*Pi)+(2/7)*cos((3/7)*Pi)+(6/7)*x^2*cos((3/7)*Pi)-(6/7)*x*cos((3/7)*Pi)-1/7+(3/7)*x-(3/7)*x^2+x^3

    [4] -(2/7)*cos((1/7)*Pi)-(12/7)*x^2*cos((1/7)*Pi)+(8/7)*x*cos((1/7)*Pi)+(8/7)*x^3*cos((1/7)*Pi)-(8/7)*cos((2/7)*Pi)*x^3+(2/7)*cos((2/7)*Pi)+(12/7)*cos((2/7)*Pi)*x^2-(8/7)*x*cos((2/7)*Pi)-(2/7)*cos((3/7)*Pi)-(12/7)*x^2*cos((3/7)*Pi)+(8/7)*x*cos((3/7)*
    Pi)+(8/7)*x^3*cos((3/7)*Pi)+1/7-(4/7)*x+(6/7)*x^2-(4/7)*x^3+x^4


    evalf[20](L): fnormal(%): identify(%); # to have a guess

    2 3 4
    [x, x , x , x ]

    convert(L, RootOf): # nun aber in echt ...
    simplify(%);
    2 3 4
    [x, x , x , x ]

    I think it is also "what is intended by simplify (and should trig
    survive)?" Thus I included sci.math.symbolic for further answers.

    PS: would you mind to post as list

    PPS: well, it may break down at some degree


    Derive 6.10 doesn't need any teaching: your quadruple expression

    [-1/7+x-2/7*COS(2/7*pi)+2/7*COS(3/7*pi)+2/7*COS(1/7*pi),4/7*x*CO~ S(1/7*pi)-2/7*COS(1/7*pi)-4/7*x*COS(2/7*pi)+2/7*COS(2/7*pi)+4/7*~ x*COS(3/7*pi)-2/7*COS(3/7*pi)+1/7-2/7*x+x^2,2/7*COS(1/7*pi)+6/7*~ x^2*COS(1/7*pi)-6/7*x*COS(1/7*pi)-2/7*COS(2/7*pi)-6/7*COS(2/7*pi~ )*x^2+6/7*x*COS(2/7*pi)+2/7*COS(3/7*pi)+6/7*x^2*COS(3/7*pi)-6/7*~ x*COS(3/7*pi)-1/7+3/7*x-3/7*x^2+x^3,-2/7*COS(1/7*pi)-12/7*x^2*CO~ S(1/7*pi)+8/7*x*COS(1/7*pi)+8/7*x^3*COS(1/7*pi)-8/7*COS(2/7*pi)*~ x^3+2/7*COS(2/7*pi)+12/7*COS(2/7*pi)*x^2-8/7*x*COS(2/7*pi)-2/7*C~ OS(3/7*pi)-12/7*x^2*COS(3/7*pi)+8/7*x*COS(3/7*pi)+8/7*x^3*COS(3/~ 7*pi)+1/7-4/7*x+6/7*x^2-4/7*x^3+x^4]

    is automatically simplified to

    [x,x^2,x^3,x^4]

    within a fraction of a second. These are the reduction steps for the
    first expression:

    -1/7+x-2/7*COS(2/7*pi)+2/7*COS(3/7*pi)+2/7*COS(1/7*pi)

    " COS(n*pi) -> SIN((1/2-n)*pi) "

    -1/7+x-2*SIN(3*pi/14)/7+2*COS(3*pi/7)/7+2*COS(pi/7)/7

    " COS(n*pi) -> SIN((1/2-n)*pi) "

    -1/7+x-2*SIN(3*pi/14)/7+2*SIN(pi/14)/7+2*COS(pi/7)/7

    " SIN(3*pi/14)-SIN(pi/14) -> COS(pi/7)-1/2 "

    -1/7+x-2*(COS(pi/7)-1/2)/7+2*COS(pi/7)/7

    " one final step "

    x

    I expect the remainder to be handled in the same manner. But I don't see
    why Derive should not fail to simplify similar expressions whose
    trigonometric arguments involve larger denominators, as the rule to
    handle SIN(3*pi/14) - SIN(pi/14) is not generic.

    Martin.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Axel Vogt@21:1/5 to Peter Luschny on Fri Aug 14 16:02:25 2015
    On 14.08.2015 15:00, Peter Luschny wrote:
    How can I teach Maple to simplify these expressions?
    I thought this would be peanuts for Maple
    (especially as it is peanuts for the competitor).

    ...

    Depends on what one wants do have ... If L denotes
    the list of your equations then for example

    convert(L, radical):
    simplify(%);

    2 3 4 4 3 2
    [x, x , x , x , (x - 1) (x + x + x + x + 1)]

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Peter Luschny@21:1/5 to All on Thu Aug 20 06:14:31 2015
    Maple does it, using convert(%, RootOf): simplify(%); gives the monomials x^k

    Thank you dear Axel.

    The method "convert(%, RootOf)" seems to be the
    right one since, as I said above, we are talking
    about simplifications of roots of unity.

    However what sense makes a method which even a Maple
    expert finds only after several days of search and
    which takes "the world's most powerful math engine"
    for a simple case such as for n=7 for the list of the
    first twelve expressions 457.5 seconds to find while a program
    that high-school kids in the last millennium used for
    their homework solves in a fraction of a second?

    Do not misunderstand me: I appreciate your investigations
    because unfortunately I do not possess Derive 6.10. Still
    I insist that Maple needs to be improved in this matter.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From Axel Vogt@21:1/5 to Peter Luschny on Wed Aug 19 22:08:47 2015
    XPost: sci.math.symbolic

    On 19.08.2015 20:19, Peter Luschny wrote:
    Hi Martin!

    I expect the remainder to be handled in the same manner. But I don't see
    why Derive should not fail to simplify similar expressions whose
    trigonometric arguments involve larger denominators, as the rule to
    handle SIN(3*pi/14) - SIN(pi/14) is not generic.

    I include some further examples (array of expressions).

    case 7:

    [(10/7)*x^4*cos((1/7)*Pi)+(2/7)*cos((1/7)*Pi)+(20/7)*x^2*cos((1/7)*Pi)-(20/7)*x^3*cos((1/7)*Pi)-(10/7)*x*cos((1/7)*Pi)-(20/7)*cos((2/7)*Pi)*x^2-(10/7)*cos((2/7)*Pi)*x^4+(10/7)*x*cos((2/7)*Pi)-(2/7)*cos((2/7)*Pi)+(20/7)*cos((2/7)*Pi)*x^3+(10/7)*x^4*cos((
    3/7)*Pi)+(2/7)*cos((3/7)*Pi)+(20/7)*x^2*cos((3/7)*Pi)-(20/7)*x^3*cos((3/7)*Pi)-(10/7)*x*cos((3/7)*Pi)-1/7+(5/7)*x-(10/7)*x^2+(10/7)*x^3-(5/7)*x^4+x^5,
    -(6/7)*x+(15/7)*x^2-(20/7)*x^3+(15/7)*x^4-(6/7)*x^5+x^6+(30/7)*cos((2/7)*Pi)*x^4-(12/7)*cos((2/7)*Pi)*x^5-(30/7)*x^4*cos((3/7)*Pi)-(30/7)*x^4*cos((1/7)*Pi)-(2/7)*cos((3/7)*Pi)-(2/7)*cos((1/7)*Pi)-(12/7)*x*cos((2/7)*Pi)+1/7+(2/7)*cos((2/7)*Pi)-(30/7)*x^
    2*cos((3/7)*Pi)-(30/7)*x^2*cos((1/7)*Pi)+(40/7)*x^3*cos((1/7)*Pi)+(40/7)*x^3*cos((3/7)*Pi)+(12/7)*x*cos((3/7)*Pi)+(12/7)*x*cos((1/7)*Pi)+(12/7)*x^5*cos((3/7)*Pi)+(12/7)*x^5*cos((1/7)*Pi)-(40/7)*cos((2/7)*Pi)*x^3+(30/7)*cos((2/7)*Pi)*x^2];

    case 9:

    [x+((4/9)*I)*sin((1/9)*Pi)+((4/9)*I)*sin((2/9)*Pi)-(2/9)*cos((2/9)*Pi)-((4/9)*I)*sin((4/9)*Pi)+(2/9)*cos((1/9)*Pi)-(2/9)*cos((4/9)*Pi),
    (4/9)*x*cos((1/9)*Pi)-(2/9)*cos((1/9)*Pi)-(4/9)*cos((2/9)*Pi)*x+(2/9)*cos((2/9)*Pi)-(4/9)*x*cos((4/9)*Pi)+(2/9)*cos((4/9)*Pi)+((8/9)*I)*x*sin((1/9)*Pi)-((8/9)*I)*sin((1/9)*Pi)+((8/9)*I)*x*sin((2/9)*Pi)-((8/9)*I)*sin((2/9)*Pi)+((8/9)*I)*sin((4/9)*Pi)-((
    8/9)*I)*x*sin((4/9)*Pi)+x^2,
    ((4/3)*I)*sin((2/9)*Pi)*x^2-((8/3)*I)*x*sin((1/9)*Pi)-((8/3)*I)*x*sin((2/9)*Pi)-((4/3)*I)*sin((4/9)*Pi)+((8/3)*I)*x*sin((4/9)*Pi)+((4/3)*I)*x^2*sin((1/9)*Pi)-((4/3)*I)*x^2*sin((4/9)*Pi)+((4/3)*I)*sin((2/9)*Pi)+((4/3)*I)*sin((1/9)*Pi)-(2/3)*x*cos((1/9)*
    Pi)+(2/3)*x^2*cos((1/9)*Pi)+(2/3)*cos((2/9)*Pi)*x-(2/3)*cos((2/9)*Pi)*x^2+(2/3)*x*cos((4/9)*Pi)-(2/3)*x^2*cos((4/9)*Pi)+x^3,
    ((16/3)*I)*x*sin((1/9)*Pi)+((16/9)*I)*x^3*sin((1/9)*Pi)-((16/3)*I)*x*sin((4/9)*Pi)-((16/3)*I)*x^2*sin((1/9)*Pi)+((16/3)*I)*x^2*sin((4/9)*Pi)-((16/9)*I)*x^3*sin((4/9)*Pi)-((16/3)*I)*sin((2/9)*Pi)*x^2+((16/9)*I)*sin((2/9)*Pi)*x^3+((16/3)*I)*x*sin((2/9)*
    Pi)+((16/9)*I)*sin((4/9)*Pi)-((16/9)*I)*sin((2/9)*Pi)-((16/9)*I)*sin((1/9)*Pi)+(8/9)*x^3*cos((1/9)*Pi)-(2/9)*cos((1/9)*Pi)-(4/3)*x^2*cos((1/9)*Pi)+(4/3)*cos((2/9)*Pi)*x^2+(2/9)*cos((2/9)*Pi)-(8/9)*cos((2/9)*Pi)*x^3+(4/3)*x^2*cos((4/9)*Pi)+(2/9)*cos((4/9)*
    Pi)-(8/9)*x^3*cos((4/9)*Pi)+x^4,
    x^5-(10/9)*cos((2/9)*Pi)*x^4+(20/9)*cos((2/9)*Pi)*x^3-(10/9)*x*cos((1/9)*Pi)+(10/9)*x*cos((4/9)*Pi)+(10/9)*cos((2/9)*Pi)*x+(20/9)*x^3*cos((4/9)*Pi)-(20/9)*x^3*cos((1/9)*Pi)-(2/9)*cos((2/9)*Pi)+((20/9)*I)*sin((2/9)*Pi)-((20/9)*I)*sin((4/9)*Pi)+((20/9)*I)
    *sin((1/9)*Pi)-((80/9)*I)*sin((2/9)*Pi)*x^3+((20/9)*I)*sin((2/9)*Pi)*x^4-((20/9)*I)*x^4*sin((4/9)*Pi)+((20/9)*I)*x^4*sin((1/9)*Pi)+((40/3)*I)*sin((2/9)*Pi)*x^2-((40/3)*I)*x^2*sin((4/9)*Pi)+((40/3)*I)*x^2*sin((1/9)*Pi)+((80/9)*I)*x^3*sin((4/9)*Pi)-((80/9)*
    I)*x^3*sin((1/9)*Pi)-((80/9)*I)*x*sin((2/9)*Pi)+((80/9)*I)*x*sin((4/9)*Pi)-((80/9)*I)*x*sin((1/9)*Pi)+(10/9)*x^4*cos((1/9)*Pi)-(10/9)*x^4*cos((4/9)*Pi)+(2/9)*cos((1/9)*Pi)-(2/9)*cos((4/9)*Pi)];

    case 11:

    [-1/11+x+(2/11)*cos((5/11)*Pi)+(2/11)*cos((1/11)*Pi)+(2/11)*cos((3/11)*Pi)-(2/11)*cos((4/11)*Pi)-(2/11)*cos((2/11)*Pi),
    -(2/11)*cos((1/11)*Pi)+(4/11)*x*cos((1/11)*Pi)+(2/11)*cos((2/11)*Pi)-(4/11)*cos((2/11)*Pi)*x-(2/11)*cos((3/11)*Pi)+(4/11)*x*cos((3/11)*Pi)+(2/11)*cos((4/11)*Pi)-(4/11)*x*cos((4/11)*Pi)-(2/11)*cos((5/11)*Pi)+(4/11)*x*cos((5/11)*Pi)+1/11-(2/11)*x+x^2,
    (2/11)*cos((1/11)*Pi)+(6/11)*x^2*cos((1/11)*Pi)-(6/11)*x*cos((1/11)*Pi)-(6/11)*cos((2/11)*Pi)*x^2-(2/11)*cos((2/11)*Pi)+(6/11)*cos((2/11)*Pi)*x+(2/11)*cos((3/11)*Pi)+(6/11)*x^2*cos((3/11)*Pi)-(6/11)*x*cos((3/11)*Pi)-(6/11)*x^2*cos((4/11)*Pi)-(2/11)*cos(
    (4/11)*Pi)+(6/11)*x*cos((4/11)*Pi)+(2/11)*cos((5/11)*Pi)+(6/11)*x^2*cos((5/11)*Pi)-(6/11)*x*cos((5/11)*Pi)-1/11+(3/11)*x-(3/11)*x^2+x^3,
    -(4/11)*x+(6/11)*x^2-(4/11)*x^3+x^4-(8/11)*cos((2/11)*Pi)*x^3+(12/11)*cos((2/11)*Pi)*x^2-(8/11)*cos((2/11)*Pi)*x-(12/11)*x^2*cos((5/11)*Pi)+(12/11)*x^2*cos((4/11)*Pi)-(12/11)*x^2*cos((1/11)*Pi)-(12/11)*x^2*cos((3/11)*Pi)-(2/11)*cos((5/11)*Pi)-(2/11)*
    cos((1/11)*Pi)-(2/11)*cos((3/11)*Pi)+(2/11)*cos((4/11)*Pi)+(8/11)*x^3*cos((1/11)*Pi)+(8/11)*x^3*cos((3/11)*Pi)+(8/11)*x^3*cos((5/11)*Pi)-(8/11)*x^3*cos((4/11)*Pi)+1/11+(2/11)*cos((2/11)*Pi)-(8/11)*x*cos((4/11)*Pi)+(8/11)*x*cos((3/11)*Pi)+(8/11)*x*cos((1/
    11)*Pi)+(8/11)*x*cos((5/11)*Pi),
    (5/11)*x-(10/11)*x^2+(10/11)*x^3-(5/11)*x^4+x^5+(20/11)*cos((2/11)*Pi)*x^3-(20/11)*cos((2/11)*Pi)*x^2+(10/11)*cos((2/11)*Pi)*x-(10/11)*cos((2/11)*Pi)*x^4+(20/11)*x^2*cos((5/11)*Pi)-(20/11)*x^2*cos((4/11)*Pi)+(20/11)*x^2*cos((1/11)*Pi)+(20/11)*x^2*cos((
    3/11)*Pi)+(2/11)*cos((5/11)*Pi)+(2/11)*cos((1/11)*Pi)+(2/11)*cos((3/11)*Pi)-(2/11)*cos((4/11)*Pi)-(20/11)*x^3*cos((1/11)*Pi)-(20/11)*x^3*cos((3/11)*Pi)-(20/11)*x^3*cos((5/11)*Pi)+(20/11)*x^3*cos((4/11)*Pi)-(2/11)*cos((2/11)*Pi)-1/11+(10/11)*x^4*cos((5/11)
    *Pi)-(10/11)*x^4*cos((4/11)*Pi)+(10/11)*x^4*cos((3/11)*Pi)+(10/11)*x^4*cos((1/11)*Pi)+(10/11)*x*cos((4/11)*Pi)-(10/11)*x*cos((3/11)*Pi)-(10/11)*x*cos((1/11)*Pi)-(10/11)*x*cos((5/11)*Pi)];

    Can Rubi handle them?

    And: what is the _general_ reduction strategy?


    Maple does it, using convert(%, RootOf): simplify(%); gives the monomials x^k

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)
  • From clicliclic@freenet.de@21:1/5 to Axel Vogt on Sat Aug 22 13:55:14 2015
    XPost: sci.math.symbolic

    Axel Vogt schrieb:

    On 19.08.2015 20:19, Peter Luschny wrote:

    I expect the remainder to be handled in the same manner. But I
    don't see why Derive should not fail to simplify similar
    expressions whose trigonometric arguments involve larger
    denominators, as the rule to handle SIN(3*pi/14) - SIN(pi/14) is
    not generic.

    I include some further examples (array of expressions).

    case 7:

    [...];

    case 9:

    [...];

    case 11:

    [...];

    Can Rubi handle them?

    And: what is the _general_ reduction strategy?


    Maple does it, using convert(%, RootOf): simplify(%); gives the
    monomials x^k

    Automatic simplification on Derive 6.10 (not Rubi!) reduces Peter's
    vector expressions as follows:

    [10/7*x^4*COS(1/7*pi)+2/7*COS(1/7*pi)+20/7*x^2*COS(1/7*pi)-20/7*~ x^3*COS(1/7*pi)-10/7*x*COS(1/7*pi)-20/7*COS(2/7*pi)*x^2-10/7*COS~ (2/7*pi)*x^4+10/7*x*COS(2/7*pi)-2/7*COS(2/7*pi)+20/7*COS(2/7*pi)~ *x^3+10/7*x^4*COS(3/7*pi)+2/7*COS(3/7*pi)+20/7*x^2*COS(3/7*pi)-2~ 0/7*x^3*COS(3/7*pi)-10/7*x*COS(3/7*pi)-1/7+5/7*x-10/7*x^2+10/7*x~ ^3-5/7*x^4+x^5,-6/7*x+15/7*x^2-20/7*x^3+15/7*x^4-6/7*x^5+x^6+30/~ 7*COS(2/7*pi)*x^4-12/7*COS(2/7*pi)*x^5-30/7*x^4*COS(3/7*pi)-30/7~ *x^4*COS(1/7*pi)-2/7*COS(3/7*pi)-2/7*COS(1/7*pi)-12/7*x*COS(2/7*~ pi)+1/7+2/7*COS(2/7*pi)-30/7*x^2*COS(3/7*pi)-30/7*x^2*COS(1/7*pi~ )+40/7*x^3*COS(1/7*pi)+40/7*x^3*COS(3/7*pi)+12/7*x*COS(3/7*pi)+1~ 2/7*x*COS(1/7*pi)+12/7*x^5*COS(3/7*pi)+12/7*x^5*COS(1/7*pi)-40/7~ *COS(2/7*pi)*x^3+30/7*COS(2/7*pi)*x^2]

    [x^5,x^6]

    [x+(4/9*#i)*SIN(1/9*pi)+(4/9*#i)*SIN(2/9*pi)-2/9*COS(2/9*pi)-(4/~ 9*#i)*SIN(4/9*pi)+2/9*COS(1/9*pi)-2/9*COS(4/9*pi),4/9*x*COS(1/9*~ pi)-2/9*COS(1/9*pi)-4/9*COS(2/9*pi)*x+2/9*COS(2/9*pi)-4/9*x*COS(~ 4/9*pi)+2/9*COS(4/9*pi)+(8/9*#i)*x*SIN(1/9*pi)-(8/9*#i)*SIN(1/9*~ pi)+(8/9*#i)*x*SIN(2/9*pi)-(8/9*#i)*SIN(2/9*pi)+(8/9*#i)*SIN(4/9~ *pi)-(8/9*#i)*x*SIN(4/9*pi)+x^2,(4/3*#i)*SIN(2/9*pi)*x^2-(8/3*#i~ )*x*SIN(1/9*pi)-(8/3*#i)*x*SIN(2/9*pi)-(4/3*#i)*SIN(4/9*pi)+(8/3~ *#i)*x*SIN(4/9*pi)+(4/3*#i)*x^2*SIN(1/9*pi)-(4/3*#i)*x^2*SIN(4/9~ *pi)+(4/3*#i)*SIN(2/9*pi)+(4/3*#i)*SIN(1/9*pi)-2/3*x*COS(1/9*pi)~ +2/3*x^2*COS(1/9*pi)+2/3*COS(2/9*pi)*x-2/3*COS(2/9*pi)*x^2+2/3*x~ *COS(4/9*pi)-2/3*x^2*COS(4/9*pi)+x^3,(16/3*#i)*x*SIN(1/9*pi)+(16~ /9*#i)*x^3*SIN(1/9*pi)-(16/3*#i)*x*SIN(4/9*pi)-(16/3*#i)*x^2*SIN~ (1/9*pi)+(16/3*#i)*x^2*SIN(4/9*pi)-(16/9*#i)*x^3*SIN(4/9*pi)-(16~ /3*#i)*SIN(2/9*pi)*x^2+(16/9*#i)*SIN(2/9*pi)*x^3+(16/3*#i)*x*SIN~ (2/9*pi)+(16/9*#i)*SIN(4/9*pi)-(16/9*#i)*SIN(2/9*pi)-(16/9*#i)*S~ IN(1/9*pi)+8/9*x^3*COS(1/9*pi)-2/9*COS(1/9*pi)-4/3*x^2*COS(1/9*p~ i)+4/3*COS(2/9*pi)*x^2+2/9*COS(2/9*pi)-8/9*COS(2/9*pi)*x^3+4/3*x~ ^2*COS(4/9*pi)+2/9*COS(4/9*pi)-8/9*x^3*COS(4/9*pi)+x^4,x^5-10/9*~ COS(2/9*pi)*x^4+20/9*COS(2/9*pi)*x^3-10/9*x*COS(1/9*pi)+10/9*x*C~ OS(4/9*pi)+10/9*COS(2/9*pi)*x+20/9*x^3*COS(4/9*pi)-20/9*x^3*COS(~ 1/9*pi)-2/9*COS(2/9*pi)+(20/9*#i)*SIN(2/9*pi)-(20/9*#i)*SIN(4/9*~ pi)+(20/9*#i)*SIN(1/9*pi)-(80/9*#i)*SIN(2/9*pi)*x^3+(20/9*#i)*SI~ N(2/9*pi)*x^4-(20/9*#i)*x^4*SIN(4/9*pi)+(20/9*#i)*x^4*SIN(1/9*pi~ )+(40/3*#i)*SIN(2/9*pi)*x^2-(40/3*#i)*x^2*SIN(4/9*pi)+(40/3*#i)*~ x^2*SIN(1/9*pi)+(80/9*#i)*x^3*SIN(4/9*pi)-(80/9*#i)*x^3*SIN(1/9*~ pi)-(80/9*#i)*x*SIN(2/9*pi)+(80/9*#i)*x*SIN(4/9*pi)-(80/9*#i)*x*~ SIN(1/9*pi)+10/9*x^4*COS(1/9*pi)-10/9*x^4*COS(4/9*pi)+2/9*COS(1/~ 9*pi)-2/9*COS(4/9*pi)]

    [x,x^2,x^3,x^4,x^5]

    [-1/11+x+2/11*COS(5/11*pi)+2/11*COS(1/11*pi)+2/11*COS(3/11*pi)-2~ /11*COS(4/11*pi)-2/11*COS(2/11*pi),-2/11*COS(1/11*pi)+4/11*x*COS~ (1/11*pi)+2/11*COS(2/11*pi)-4/11*COS(2/11*pi)*x-2/11*COS(3/11*pi~ )+4/11*x*COS(3/11*pi)+2/11*COS(4/11*pi)-4/11*x*COS(4/11*pi)-2/11~ *COS(5/11*pi)+4/11*x*COS(5/11*pi)+1/11-2/11*x+x^2,2/11*COS(1/11*~ pi)+6/11*x^2*COS(1/11*pi)-6/11*x*COS(1/11*pi)-6/11*COS(2/11*pi)*~ x^2-2/11*COS(2/11*pi)+6/11*COS(2/11*pi)*x+2/11*COS(3/11*pi)+6/11~ *x^2*COS(3/11*pi)-6/11*x*COS(3/11*pi)-6/11*x^2*COS(4/11*pi)-2/11~ *COS(4/11*pi)+6/11*x*COS(4/11*pi)+2/11*COS(5/11*pi)+6/11*x^2*COS~ (5/11*pi)-6/11*x*COS(5/11*pi)-1/11+3/11*x-3/11*x^2+x^3,-4/11*x+6~ /11*x^2-4/11*x^3+x^4-8/11*COS(2/11*pi)*x^3+12/11*COS(2/11*pi)*x^~ 2-8/11*COS(2/11*pi)*x-12/11*x^2*COS(5/11*pi)+12/11*x^2*COS(4/11*~ pi)-12/11*x^2*COS(1/11*pi)-12/11*x^2*COS(3/11*pi)-2/11*COS(5/11*~ pi)-2/11*COS(1/11*pi)-2/11*COS(3/11*pi)+2/11*COS(4/11*pi)+8/11*x~ ^3*COS(1/11*pi)+8/11*x^3*COS(3/11*pi)+8/11*x^3*COS(5/11*pi)-8/11~ *x^3*COS(4/11*pi)+1/11+2/11*COS(2/11*pi)-8/11*x*COS(4/11*pi)+8/1~ 1*x*COS(3/11*pi)+8/11*x*COS(1/11*pi)+8/11*x*COS(5/11*pi),5/11*x-~ 10/11*x^2+10/11*x^3-5/11*x^4+x^5+20/11*COS(2/11*pi)*x^3-20/11*CO~ S(2/11*pi)*x^2+10/11*COS(2/11*pi)*x-10/11*COS(2/11*pi)*x^4+20/11~ *x^2*COS(5/11*pi)-20/11*x^2*COS(4/11*pi)+20/11*x^2*COS(1/11*pi)+~ 20/11*x^2*COS(3/11*pi)+2/11*COS(5/11*pi)+2/11*COS(1/11*pi)+2/11*~ COS(3/11*pi)-2/11*COS(4/11*pi)-20/11*x^3*COS(1/11*pi)-20/11*x^3*~ COS(3/11*pi)-20/11*x^3*COS(5/11*pi)+20/11*x^3*COS(4/11*pi)-2/11*~ COS(2/11*pi)-1/11+10/11*x^4*COS(5/11*pi)-10/11*x^4*COS(4/11*pi)+~ 10/11*x^4*COS(3/11*pi)+10/11*x^4*COS(1/11*pi)+10/11*x*COS(4/11*p~ i)-10/11*x*COS(3/11*pi)-10/11*x*COS(1/11*pi)-10/11*x*COS(5/11*pi~
    )]

    [-2*COS(2*pi/11)/11+2*COS(pi/11)/11+2*SIN(5*pi/22)/11-2*SIN(3*pi~ /22)/11+2*SIN(pi/22)/11+x-1/11,(2/11-4*x/11)*COS(2*pi/11)+(4*x/1~ 1-2/11)*COS(pi/11)+(4*x/11-2/11)*SIN(5*pi/22)+(2/11-4*x/11)*SIN(~ 3*pi/22)+(4*x/11-2/11)*SIN(pi/22)+x^2-2*x/11+1/11,-(6*x^2/11-6*x~ /11+2/11)*COS(2*pi/11)+(6*x^2/11-6*x/11+2/11)*COS(pi/11)+(6*x^2/~ 11-6*x/11+2/11)*SIN(5*pi/22)-(6*x^2/11-6*x/11+2/11)*SIN(3*pi/22)~ +(6*x^2/11-6*x/11+2/11)*SIN(pi/22)+x^3-3*x^2/11+3*x/11-1/11,-(8*~ x^3/11-12*x^2/11+8*x/11-2/11)*COS(2*pi/11)+(8*x^3/11-12*x^2/11+8~ *x/11-2/11)*COS(pi/11)+(8*x^3/11-12*x^2/11+8*x/11-2/11)*SIN(5*pi~ /22)-(8*x^3/11-12*x^2/11+8*x/11-2/11)*SIN(3*pi/22)+(8*x^3/11-12*~ x^2/11+8*x/11-2/11)*SIN(pi/22)+x^4-4*x^3/11+6*x^2/11-4*x/11+1/11~ ,-(10*x^4/11-20*x^3/11+20*x^2/11-10*x/11+2/11)*COS(2*pi/11)+(10*~ x^4/11-20*x^3/11+20*x^2/11-10*x/11+2/11)*COS(pi/11)+(10*x^4/11-2~ 0*x^3/11+20*x^2/11-10*x/11+2/11)*SIN(5*pi/22)-(10*x^4/11-20*x^3/~ 11+20*x^2/11-10*x/11+2/11)*SIN(3*pi/22)+(10*x^4/11-20*x^3/11+20*~ x^2/11-10*x/11+2/11)*SIN(pi/22)+x^5-5*x^4/11+10*x^3/11-10*x^2/11~
    +5*x/11-1/11]

    So, as anticipated, Derive's rule set cannot fully handle the case of
    argument denominator 11. Here are the reduction steps for the middle
    element with argument denominator 9:

    (4/3*#i)*SIN(2/9*pi)*x^2-(8/3*#i)*x*SIN(1/9*pi)-(8/3*#i)*x*SIN(2~ /9*pi)-(4/3*#i)*SIN(4/9*pi)+(8/3*#i)*x*SIN(4/9*pi)+(4/3*#i)*x^2*~ SIN(1/9*pi)-(4/3*#i)*x^2*SIN(4/9*pi)+(4/3*#i)*SIN(2/9*pi)+(4/3*#~ i)*SIN(1/9*pi)-2/3*x*COS(1/9*pi)+2/3*x^2*COS(1/9*pi)+2/3*COS(2/9~ *pi)*x-2/3*COS(2/9*pi)*x^2+2/3*x*COS(4/9*pi)-2/3*x^2*COS(4/9*pi)~
    +x^3

    " SIN(n*pi) -> COS((1/2-n)*pi) "

    8*#i*x*SIN(4*pi/9)/3+4*#i*x^2*SIN(pi/9)/3-4*#i*x^2*SIN(4*pi/9)/3~ +4*#i*SIN(2*pi/9)/3+4*#i*SIN(pi/9)/3-2*x*COS(pi/9)/3+2*x^2*COS(p~ i/9)/3+2*x*COS(2*pi/9)/3-2*x^2*COS(2*pi/9)/3+2*x*COS(4*pi/9)/3-2~ *x^2*COS(4*pi/9)/3-4*#i*COS(pi/18)/3+#i*((4*x^2/3-8*x/3)*SIN(2*p~ i/9)-8*x*SIN(pi/9)/3)+x^3

    " SIN(n*pi) -> COS((1/2-n)*pi) "

    8*#i*x*COS(pi/18)/3+4*#i*x^2*SIN(pi/9)/3-4*#i*x^2*SIN(4*pi/9)/3+~ 4*#i*SIN(2*pi/9)/3+4*#i*SIN(pi/9)/3-2*x*COS(pi/9)/3+2*x^2*COS(pi~ /9)/3+2*x*COS(2*pi/9)/3-2*x^2*COS(2*pi/9)/3+2*x*COS(4*pi/9)/3-2*~ x^2*COS(4*pi/9)/3-4*#i*COS(pi/18)/3+#i*((4*x^2/3-8*x/3)*SIN(2*pi~ /9)-8*x*SIN(pi/9)/3)+x^3

    " SIN(n*pi) -> COS((1/2-n)*pi) "

    -4*#i*x^2*COS(pi/18)/3+#i*(8*x*COS(pi/18)/3+4*x^2*SIN(pi/9)/3)+4~ *#i*SIN(2*pi/9)/3+4*#i*SIN(pi/9)/3-2*x*COS(pi/9)/3+2*x^2*COS(pi/~ 9)/3+2*x*COS(2*pi/9)/3-2*x^2*COS(2*pi/9)/3+2*x*COS(4*pi/9)/3-2*x~ ^2*COS(4*pi/9)/3-4*#i*COS(pi/18)/3+#i*((4*x^2/3-8*x/3)*SIN(2*pi/~ 9)-8*x*SIN(pi/9)/3)+x^3

    " SIN(z)+SIN(w) -> 2*SIN(z/2+w/2)*COS(z/2-w/2) "

    #i*(4*x^2*SIN(pi/9)/3+(8*x/3-4*x^2/3)*COS(pi/18)+8*SIN(pi/6)*COS~ (pi/18)/3)-2*x*COS(pi/9)/3+2*x^2*COS(pi/9)/3+2*x*COS(2*pi/9)/3-2~ *x^2*COS(2*pi/9)/3+2*x*COS(4*pi/9)/3-2*x^2*COS(4*pi/9)/3-4*#i*CO~ S(pi/18)/3+#i*((4*x^2/3-8*x/3)*SIN(2*pi/9)-8*x*SIN(pi/9)/3)+x^3

    " SIN(pi/6) -> 1/2 "

    #i*(4*x^2*SIN(pi/9)/3+(8*x/3-4*x^2/3)*COS(pi/18)+4*COS(pi/18)/3)~ -2*x*COS(pi/9)/3+2*x^2*COS(pi/9)/3+2*x*COS(2*pi/9)/3-2*x^2*COS(2~ *pi/9)/3+2*x*COS(4*pi/9)/3-2*x^2*COS(4*pi/9)/3-4*#i*COS(pi/18)/3~ +#i*((4*x^2/3-8*x/3)*SIN(2*pi/9)-8*x*SIN(pi/9)/3)+x^3

    " COS(z)-COS(w) -> -2*SIN(z/2-w/2)*SIN(z/2+w/2) "

    2*(-2*x^2/3+2*x/3)*SIN(pi/18)*COS(2*pi/3)+#i*(4*x^2*SIN(pi/9)/3-~ (4*x^2/3-8*x/3-4/3)*COS(pi/18))+2*x*COS(4*pi/9)/3-2*x^2*COS(4*pi~ /9)/3-4*#i*COS(pi/18)/3+#i*((4*x^2/3-8*x/3)*SIN(2*pi/9)-8*x*SIN(~
    pi/9)/3)+x^3

    " COS(n*pi) -> SIN((1/2-n)*pi) "

    -4*x*(1-x)*SIN(pi/6)*SIN(pi/18)/3+#i*(4*x^2*SIN(pi/9)/3-(4*x^2/3~ -8*x/3-4/3)*COS(pi/18))+2*x*COS(4*pi/9)/3-2*x^2*COS(4*pi/9)/3-4*~ #i*COS(pi/18)/3+#i*((4*x^2/3-8*x/3)*SIN(2*pi/9)-8*x*SIN(pi/9)/3)~
    +x^3

    " SIN(pi/6) -> 1/2 "

    2*x*(x-1)*SIN(pi/18)/3+#i*(4*x^2*SIN(pi/9)/3-(4*x^2/3-8*x/3-4/3)~ *COS(pi/18))+2*x*COS(4*pi/9)/3-2*x^2*COS(4*pi/9)/3-4*#i*COS(pi/1~ 8)/3+#i*((4*x^2/3-8*x/3)*SIN(2*pi/9)-8*x*SIN(pi/9)/3)+x^3

    " COS(n*pi) -> SIN((1/2-n)*pi) "

    2*x*(x-1)*SIN(pi/18)/3+2*x*SIN(pi/18)/3+#i*(4*x^2*SIN(pi/9)/3-4*~ (x^2-2*x-1)*COS(pi/18)/3)-2*x^2*COS(4*pi/9)/3-4*#i*COS(pi/18)/3+~ #i*((4*x^2/3-8*x/3)*SIN(2*pi/9)-8*x*SIN(pi/9)/3)+x^3

    " COS(n*pi) -> SIN((1/2-n)*pi) "

    2*x^2*SIN(pi/18)/3-2*x^2*SIN(pi/18)/3+#i*(4*x^2*SIN(pi/9)/3-4*(x~ ^2-2*x-1)*COS(pi/18)/3)-4*#i*COS(pi/18)/3+#i*((4*x^2/3-8*x/3)*SI~ N(2*pi/9)-8*x*SIN(pi/9)/3)+x^3

    " SIN(z)+SIN(w) -> 2*SIN(z/2+w/2)*COS(z/2-w/2) "

    #i*(2*(4*x^2/3-8*x/3)*SIN(pi/6)*COS(pi/18)-4*x*(x-2)*COS(pi/18)/~
    3)+x^3

    " SIN(pi/6) -> 1/2 "

    #i*(4*x*(x-2)*COS(pi/18)/3+4*x*(2-x)*COS(pi/18)/3)+x^3

    " one final step "

    x^3

    Examples of Derive's rule SIN(3*pi/14) - SIN(pi/14) -> COS(pi/7) - 1/2
    extended to higher denominators are SIN(5*pi/22) - SIN(3*pi/22) +
    SIN(pi/22) -> COS(2*pi/11) - COS(pi/11) + 1/2 and SIN(5*pi/26) -
    SIN(3*pi/26) + SIN(pi/26) -> COS(3*pi/13) - COS(2*pi/13) + COS(pi/13) -
    1/2. Generalization to arbitrary denominators seems straightforward.
    Numerical approximation to high precision could be an acceptable
    alternative in many situations.

    Martin.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)