• More of my philosophy and precision about the link of the article and m

    From World-News2100@21:1/5 to All on Thu Nov 25 11:18:46 2021
    Hello,



    More of my philosophy and precision about the link of the article and more..

    And notice that the link below of the article that shows the problem
    of implementing coroutines with just setjmp() and longjmp()
    is from the last semester of the second year of the course
    called "CS4411 Operating Systems" from Michigan Technological
    University, but i think i am smart and those courses are easy
    for me, so i invite you to read about this course that requires
    both the course of "CS3331 Concurrent Computing" and "CS3421 Computer Organization", and here it is:

    http://www.csl.mtu.edu/cs4411.ck/www/Home.html

    More of my philosophy about coroutines and about setjmp() and longjmp()..

    I think i am smart, and i will say that with setjmp() and longjmp()
    you can implement a generator or the like, but you can not implement
    coroutines with just setjmp() and longjmp(), and so that to understand
    it, i invite you to read the following article that shows how when you
    yield from a first function with a longjmp() to the main body of a
    program and when you call another functions with longjmp(), it can make
    the stack frames not work correctly, and when you understand it you will
    not use setjmp() and longjmp() alone so that to implement coroutines, so
    read the following article so that to understand the problem with
    the stack frames, and i am understanding it easily:

    https://www.csl.mtu.edu/cs4411.ck/www/NOTES/non-local-goto/coroutine.html

    So this is why i have also implemented my sophisticated stackful
    coroutines library so that to solve this problem, and here is my
    sophisticated coroutines library and read about it and download it from
    here:

    https://sites.google.com/site/scalable68/object-oriented-stackful-coroutines-library-for-delphi-and-freepascal

    More of my philosophy about setjmp() and longjmp() and generators and coroutines..

    I have just quickly implemented setjmp() and longjmp() in x64 assembler,
    and after that i have just implemented quickly a good example of a
    generator with my setjmp() and longjmp(), look at it below, and in
    computer science, a generator is a routine that can be used to control
    the iteration behaviour of a loop. All generators are also iterators. A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of
    values. However, instead of building an array containing all the values
    and returning them all at once, a generator yields the values one at a
    time, which requires less memory and allows the caller to get started processing the first few values immediately. In short, a generator looks
    like a function but behaves like an iterator. So here is my
    implementations in freepascal and delphi and they are working perfectly:

    Here is my first unit that implements longjmp() and setjmp() and notice
    how i am saving the non-volatile registers and how i am coding it in
    x64 assembler:

    ======


    { Volatile registers: The calling program assumes registers
    RAX, RCX, RDX, and R8 through R11 are volatile.
    The contents of registers RBX, RSI, RDI, RBP, RSP, and
    R12 through R15 are considered non-volatile. Functions return
    values in RAX. }



    unit JmpLib64;

    {$IFDEF FPC}
    {$ASMMODE intel}
    {$ENDIF}
    interface

    type
    jmp_buf = record
    RBX,
    RSI,
    RDI,
    RSP,
    RBP,
    RIP,
    R12,
    R13,
    R14,
    R15: UInt64;
    end;

    { setjmp captures the complete task state which can later be used to
    perform a non-local goto using longjmp. setjmp returns 0 when it is
    initially called, and a non-zero value when it is returning from a call
    to longjmp. setjmp must be called before longjmp. }

    function setjmp(out jmpb: jmp_buf): UInt64;

    { longjmp restores the task state captured by setjmp (and passed in
    jmpb). It then returns in such a way that setjmp appears to have
    returned with the value retval. setjmp must be called before longjmp. }

    procedure longjmp(const jmpb: jmp_buf; retval: UInt64);
    implementation

    function setjmp(out jmpb: jmp_buf): UInt64; assembler;{$IFDEF FPC} nostackframe; {$ENDIF}register;
    asm
    { -> RCX jmpb }
    { <- RAX Result }
    MOV RDX, [RSP] // Fetch return address (RIP)
    // Save task state
    MOV [RCX+jmp_buf.&RBX], RBX
    MOV [RCX+jmp_buf.&RSI], RSI
    MOV [RCX+jmp_buf.&RDI], RDI
    MOV [RCX+jmp_buf.&RSP], RSP
    MOV [RCX+jmp_buf.&RBP], RBP
    MOV [RCX+jmp_buf.&RIP], RDX
    MOV [RCX+jmp_buf.&R12], R12
    MOV [RCX+jmp_buf.&R13], R13
    MOV [RCX+jmp_buf.&R14], R14
    MOV [RCX+jmp_buf.&R15], R15


    SUB RAX, RAX
    @@1:
    end;

    procedure longjmp(const jmpb: jmp_buf; retval: UInt64);assembler;{$IFDEF
    FPC} nostackframe; {$ENDIF}register;
    asm
    { -> RCX jmpb }
    { RDX retval }
    { <- RAX Result }
    XCHG RDX, RCX
    MOV RAX,RCX
    MOV RCX, [RDX+jmp_buf.&RIP]
    // Restore task state
    MOV RBX, [RDX+jmp_buf.&RBX]
    MOV RSI, [RDX+jmp_buf.&RSI]
    MOV RDI, [RDX+jmp_buf.&RDI]
    MOV RSP, [RDX+jmp_buf.&RSP]
    MOV RBP, [RDX+jmp_buf.&RBP]
    MOV R12, [RDX+jmp_buf.&R12]
    MOV R13, [RDX+jmp_buf.&R13]
    MOV R14, [RDX+jmp_buf.&R14]
    MOV R15, [RDX+jmp_buf.&R15]
    MOV [RSP], RCX // Restore return address (RIP)

    TEST RAX, RAX // Ensure retval is <> 0
    JNZ @@1
    MOV RAX, 1
    @@1:
    end;

    end.

    ================

    And here is my example of a generator with my longjmp() and setjmp():


    { In computer science, a generator is a routine that can be used to
    control the iteration behaviour of a loop. All generators are also
    iterators. A generator is very similar to a function that returns an
    array, in that a generator has parameters, can be called, and generates
    a sequence of values. However, instead of building an array containing
    all the values and returning them all at once, a generator yields the
    values one at a time, which requires less memory and allows the caller
    to get started processing the first few values immediately. In short, a generator looks like a function but behaves like an iterator. }

    program test_generator;

    {$APPTYPE CONSOLE}

    uses
    JmpLib64;

    type PtrInt = ^Integer;

    var
    childtask,maintask: jmp_buf;
    myarr1: array of integer;
    i,a:integer;
    Ptr1:PtrInt;

    function generator(var myarr:array of integer):integer;

    var i1:integer;
    val:integer;
    ptr:PtrInt;
    begin


    i1:=0;

    val:= setjmp(childtask);

    i1:=val-1;

    if val=0 then
    begin
    new(ptr);
    ptr^:=myarr1[i1];
    longjmp(maintask,uint64(ptr));
    end;

    if val=10
    then
    begin
    writeln('Exiting child..');
    exit;
    end;

    inc(i1);
    new(ptr);
    ptr^:=myarr1[i1];
    longjmp(maintask,uint64(ptr));
    end;

    begin

    setlength(myarr1,10);

    for i:=0 to 9
    do myarr1[i]:=i;

    uint64(ptr1):=setjmp(maintask);

    if ptr1=nil then generator(myarr1);

    a:=ptr1^;
    dispose(ptr1);

    if (a<=length(myarr1))
    then
    begin
    if a=length(myarr1)
    then longjmp(childtask,a+1)
    else
    begin
    writeln('Value retuned by generator is: ',a);
    longjmp(childtask,a+1);
    end;
    end;

    setlength(myarr1,0);

    end.

    ====


    Thank you,
    Amine Moulay Ramdane.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)