• Read again, i correct some last typos..

    From Wisdom90@21:1/5 to All on Fri May 22 15:27:38 2020
    Hello,

    Read this:


    Read again, i correct some last typos..

    My new invention of a Scalable RWLock that works across processes and
    threads is here, and now it works on both Windows and Linux..

    Please download my source code and take a look at how i am making it
    work across processes by using FNV1a hash on both process ID and thread
    ID, FNV1a has a good dispersion, and FNV1a hash permits also my RWLock
    to be scalable.


    You can download it from my website here:

    https://sites.google.com/site/scalable68/scalable-rwlock-that-works-accross-processes-and-threads

    Description:

    This is my invention of a fast, and scalable and starvation-free and
    fair and lightweight Multiple-Readers-Exclusive-Writer Lock called
    LW_RWLockX, it works across processes and threads.

    The parameters of the constructor are: first parameter is the name of
    the scalable RWLock to be used across processes, if the name is empty,
    it will only be used across threads. The second parameter is the size of
    the array of the readers, so if the size of the array is equal to the
    number of parallel readers, so it will be scalable, but if the number of readers are greater than the size of the array , you will start to have contention. The third parameter is the size of the array of my scalable
    Lock that is called AMLock, the number of threads can go beyond the size
    of the array of the scalable AMLock, please look at the source code of
    my scalable algorithms to understand.

    I have also used my following implementation of FNV1a hash function to
    make my new variants of RWLocks scalable (since FNV1a is a hash
    algorithm that has good dispersion):

    function FNV1aHash(key:int64): UInt64;

    var
    i: Integer;
    key1:uint64;

    const

    FNV_offset_basis: UInt64 = 14695981039346656037;
    FNV_prime: UInt64 = 1099511628211;

    begin

    //FNV-1a hash

    Result := FNV_offset_basis;

    for i := 1 to 8 do
    begin
    key1:=(key shr ((i-1)*8)) and $00000000000000ff;
    Result := (Result xor key1) * FNV_prime;
    end;

    end;

    - Platform: Windows, Unix and Linux on x86

    Required FPC switches: -O3 -Sd

    -Sd for delphi mode....

    Required Delphi switches: -$H+ -DDelphi

    For Delphi XE-XE7 and Delphi tokyo use the -DXE switch

    You can configure it as follows from inside defines.inc file:

    {$DEFINE CPU32} and {$DEFINE Windows32} for 32 bit systems
    {$DEFINE CPU64} and {$DEFINE Windows64} for 64 bit systems



    Thank you,
    Amine Moulay Ramdane.

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)