• Fine tune own data?

    From gianluca.miscione@ucd.ie@21:1/5 to All on Wed Jan 4 07:36:32 2023
    I have by far too many documents to remember what to use when.
    So, hoping it can make my resources more usable, I asked chatGPT
    "how to fine-tune you on my data?"

    This was its answer:
    "Fine-tuning a language model involves training the model on a new dataset that is similar to the task or domain the model will be used for. This can be done by using the pre-trained model as a starting point and further training it on your own data
    using supervised learning.
    To fine-tune a language model using your own data, you will need to do the following:
    1. Preprocess your data: You will need to clean and prepare your data for training. This may involve tokenizing the text, creating a vocabulary, and converting the data into a format that can be used by the model.
    2. Choose a pre-trained language model: You will need to select a pre-trained language model that is appropriate for your task. There are many pre-trained models available, including BERT, GPT-2, and RoBERTa.
    3. Fine-tune the model: You can fine-tune the model by using your own data to update the model's weights and biases. This is typically done using an optimization algorithm, such as stochastic gradient descent (SGD), and a loss function that measures the
    model's performance on the task.
    4. Evaluate the model: Once you have fine-tuned the model, you will need to evaluate its performance on your own data to determine how well it is able to complete the task.
    Fine-tuning a language model can be a useful way to improve its performance on a specific task, but it requires a large amount of training data and can be computationally intensive. Do you have any other questions about fine-tuning a language model?"

    Gianluca Miscione
    University College Dublin

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)