• Re: On the nature of limitations in commutative processes (2/2)

    From Martin Musatov@21:1/5 to All on Thu Jul 6 08:51:37 2023
    [continued from previous message]

    {0,1}* of L' to an instance f(x) of L.
    4.Prove that the function f satisfies x .
    L' if
    and only if f(x) .
    L for all x .
    {0,1}*.
    5.Prove that the algorithm computing f
    runs in polynomial time.
    34.4 NP-completeness proofs
    .... 2~5......... NP-hard.
    ............ NP... reduce
    ........... CIRCUIT-SAT. NPcomplete
    .......
    ........... NP-complete..,
    ..............,.......
    .. NP-complete........
    34.4 NP-completeness proofs
    Formula satisfiability
    ....... formula satisfiability
    problem,...... NP-complete.
    An instance of SAT is a boolean formula .
    composed of
    1. n boolean variables: x1, x2, ..., xn;
    2. m boolean connectives: any boolean
    function with one or two inputs and one
    output, such as ., ., ¬, .(imply), .(iff)
    3.parentheses.
    34.4 NP-completeness proofs
    Boolean formula ... encode....
    O(m+n). A truth assignment for a boolean
    formula . is a set of values for the variables
    of ., and a satisfying assignment is a truth
    assignment that causes it to evaluate to 1.
    A formula with a satisfying assignment is a
    satisfiable formula.
    SAT = {<. : . is a satisfiable boolean
    formula}.
    34.4 NP-completeness proofs
    ..: .= ((x1 .
    x2) .
    ¬ ((¬x1 .
    x3) .
    x4)) .
    ¬ x2,.. satisfying assignment. x1 = 0,
    x2 = 0, x3 = 1, x4 = 1,.
    .= ((0 .
    0) .
    ¬ ((¬0 .
    1) .
    1)) .
    ¬0
    = (1 .
    ¬ (1 .
    1)) .
    1 = (1 .
    0) .
    1 =1
    SAT...... n...,.... 2n..
    .....,............
    formula.. true,........... .
    (2n).
    34.4 NP-completeness proofs
    Theorem
    34.9 Satisfiability of boolean
    formulas is NP-complete.
    . Lemma 34.8 ......,... SAT.
    NP...,...... truth
    assignment,..........
    formula
    .... 1,......... polynomial
    time,.. SAT.. NP.
    ...... CIRCUIT-SAT =P SAT,....
    .. CIRCUIT-SAT............
    ,....... size...........
    34.4 NP-completeness proofs
    . =x.
    (x.
    ¬x) .
    (x.
    (x.
    x)) .
    (x.
    104 35126
    ¬x) .
    (x.
    (x.
    x.
    x)) .
    (x.
    (x.
    x)) .
    47124856
    (x.
    (x.
    x)) .
    (x.
    (x.
    x.
    x)).
    9 6710 789
    x1
    x2
    x3 x4
    x5
    x6
    x7
    x8
    x9
    x10
    34.4 NP-completeness proofs
    ...................
    polynomial time........ formula
    .. satisfiable..,... CIRCUIT-SAT
    .. satisfiable,.....
    .. SAT..... NP-complete.
    34.4 NP-completeness proofs
    3-CNF satisfiability
    .......: A literal in a boolean
    formula is an occurrence of a variable or its
    negation. A boolean formula is in
    conjunctive normal form, or CNF, if it is
    expressed as an AND of clauses, each of
    which is the OR of one or more literals. A
    boolean formula is in 3-conjunctive normal
    form, or 3-CNF, if each clause has exactly
    three distinct literals.
    77
    34.4 NP-completeness proofs
    ..: (x1 .
    ¬x1 .
    ¬x2) .
    (x3 .
    x2 .
    x4) .
    (¬x1
    .
    ¬x3 .
    ¬x4).... 3-CNF.
    In 3-CNF-SAT, we are asked whether a
    given boolean formula . in 3-CNF is
    satisfiable.
    Theorem 34.10 Satisfiability of boolean
    formulas in 3-conjunctive normal form is
    NP-complete.
    34.4 NP-completeness proofs
    Theorem
    34.10 Satisfiability of boolean
    formulas in 3-conjunctive normal form is
    NP-complete.
    3-CNF-SAT .
    NP.... SAT .
    NP....
    ........ SAT =P 3-CNF-SAT.
    .. SAT... reduce. 3-CNF-SAT..
    .,.... SAT. input. polynomial
    time.... 3-CNF-SAT. input,...
    ......... 3-CNF,........
    ...
    34.4 NP-completeness proofs
    .. SAT... reduce. 3-CNF-SAT..
    .,.... SAT. input. polynomial
    time.... 3-CNF-SAT. input,...
    ......... 3-CNF,........
    ...
    ...... SAT input formula. binary
    tree.
    34.4 NP-completeness proofs
    ........, . =
    ((x.
    x) .
    ¬((¬x.
    x)
    12 13
    .
    x4)) .
    ¬x2,...
    binary tree..:
    ..... ... .' = y1
    .
    (y.
    (y.
    ¬x)) .
    (y.
    1222
    (y.
    y)) .
    (y.
    (x.
    3431
    x)) .
    (y.
    ¬y) .
    (y.
    2455
    (y.
    x)) .
    (y.
    (¬x.
    646 1
    x3))
    y1
    y2
    .
    y.
    .
    ¬
    .
    .
    y¬x2
    3
    4
    y5
    xx
    1 2y6
    x
    4
    ¬xx
    13
    34.4 NP-completeness proofs
    ..... .'.......
    and,....
    ..... and..............
    ...... or.. y.
    (y.
    ¬x)...
    12
    y1 y2 x2
    . y1 .
    (y2 .
    ¬x2) = 11
    1110
    ¬((y.
    y.
    x) .
    (y
    1221 101
    .
    ¬y2 .
    x2) .
    (y1 .
    100
    011
    ¬y.
    ¬x) .
    (¬y.
    221 010
    y.
    ¬x))
    22001
    000
    = (¬y.
    ¬y.
    ¬x) .
    (¬y.
    y
    12212
    (¬y.
    y.
    x) .
    (y.
    ¬y.
    x)
    1221 22
    2
    .y1 ..y2.-x2 ..
    0
    1
    0
    0
    1
    0
    1
    1
    .
    ¬x2) .
    82
    34.4 NP-completeness proofs
    ... .'............,...
    CNF .... .".............
    .................... (xi
    .
    xj)..,... (xi .
    xj .
    p) .
    (xi .
    xj .
    ¬p)............ (x),... (x
    .
    p .
    q) .
    (x .
    ¬p .
    q) .
    (x .
    p .
    ¬q) .
    (x .
    ¬p .
    ¬q).
    ............. 3-CNF formula
    .,.... satisfiable if and only if..
    ...... satisfiable... 3-CNF-SAT.
    NP-complete.
    Exercises 34-4
    34.4-6 Suppose that someone gives you a
    polynomial-time algorithm to decide
    formula satisfiability. Describe how to use
    this algorithm to find satisfying
    assignments in polynomial time.
    34.4-7 Let 2-CNF-SAT be the set of satisfiable
    boolean formulas in CNF with exactly 2
    literals per clause. Show that 2-CNF-SAT .
    P. Make your algorithm as efficient as
    possible.(Hint: Observe that x .
    y is
    equivalent to ¬x .
    y. Reduce 2-CNF-SAT to
    a problem on a directed graph that is
    efficiently solvable.)
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    NP-complete problems arise in diverse
    domains: boolean logic, graphs,
    arithmetic, network design, sets and
    storage and retrieval,
    partitions,
    sequencing and scheduling, mathematical
    programming, algebra and number
    theory, games and puzzles, automata and
    language theory, program optimization,
    biology, chemistry, physics, and more.
    ............ NP-complete.
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    CIRCUIT-SAT
    SAT
    3-CNF-SAT
    SUBSET-SUMCLIQUE
    VERTEX-COVER
    HAM-CYCLE
    TSP
    34 NP-Completeness
    86
    34.5 NP-complete problems34.5 NP-complete problems
    34.5-1 The clique problem
    A clique in an undirected graph G = (V, E)
    is a subset V' .
    V of vertices, each pair of
    other
    which is connected by an edge in E. In
    words, a clique is a complete
    subgraph of G. The size of a clique is the
    number of vertices it contains. The clique
    problem is the optimization problem of
    finding a clique of maximum size in a
    graph.
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    34.5-1 The clique problem
    As a decision problem, we ask simply
    whether a clique of a given size k exists in
    graph. The formal definition isthe
    CLIQUE = {<G,k : G is a graph with a
    clique of size k}.
    ............... G. k .
    ..........,.... complete
    graph,.......... .(k2* C(|V|,
    k)),.. C(|V|, k). |V|........
    k .....,.........
    polynomial time.34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    Theorem
    34.11 The clique problem is NP-
    complete.
    ..... CLIQUE .
    NP,..... V',
    k.
    ..... polynomial time..
    V'...
    ..........,. |V'|......
    ........ 3-CNF-SAT =P CLIQUE,
    ...... 3-CNF-SAT. input...
    CLIQUE. input,.........,.
    .......... k ... clique.,
    3-CNF-SAT.. satisfiable,......
    ......:34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    . 3-CNF-SAT.... .=(x1 .
    ¬x2 .
    ¬x3)
    .
    (¬x1 .
    x2 .
    x3) .
    (x1 .
    x2 .
    x3),....:
    (¬x.
    (x.
    ¬x.
    ¬x)
    123
    2 .
    x3)
    1
    34 NP-Completeness
    ¬x1
    x2
    x1 2¬x3
    x1
    x2
    x2 .x3) (x1 .xx3
    ¬x2
    x3
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    ......... k ... clique ...
    3-CNF-SAT... k . clause.....
    .. satisfiable... CLIQUE....
    NP-complete.
    34 NP-Completeness
    91
    34.5 NP-complete problems34.5 NP-complete problems
    34.5.2 The vertex-cover problem
    A vertex cover of an undirected graph G
    = (V, E) is a subset V' .
    V such that if (u,
    and
    v) .
    E, then u .
    V' or v .
    V'(or both). That
    is, each vertex "cover" its incident edges,
    a vertex cover for G is a set of
    vertices that covers all the edges in E.
    The size of a vertex cover is the number
    of vertices in it.
    The vertex-cover problem is to find a
    vertex cover of minimum size in a given
    graph.
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    Restating this optimization problem as a
    decision problem, we wish to determine
    whether a graph has a vertex cover of a
    given size k. As a language, we define
    VERTEX-COVER = {<G,k : graph G has a
    vertex cover of size k}.
    Theorem 34.12 The vertex-cover problem is
    NP-complete.
    ......... NP...,... G=
    (V,E)... k..... V' .
    V,...
    |V'|
    =k....,...
    E..... (u,v),
    .. u .
    V'. v .
    V'........
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    ..... vertex-cover .... NPhard,
    ........ CLIQUE =P
    VERTEX-COVER.
    ............ complement,
    Given an undirected graph G = (V, E), we
    define the complement of G as G = (V, E),
    where E = {(u, v) : u, v .
    V, u . v, and (u,
    v) .
    E}.... G
    ....... G.,.
    .. G..... G...
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    ......... complement.
    u v
    z w
    y x
    u v
    z w
    y x
    CLIQUE =P VERTEX-COVER.....:.
    ... clique problem. instance <G,k,
    .... G. complement G,...
    vertex-cover .. <G,|V|-k...,...
    ... clique......
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    The graph G has a clique of size k if and
    only if the graph G has a vertex cover of
    size |V| -k.
    V'. G..... clique,. G. V'.
    .............,... G..
    ...... V – V'......,.. V–
    V'. vertex cover.
    . G. V – V'. vertex cover,. V'..
    ........,... G.. V'...
    . clique.
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    .. VERTEX-COVER.... NPcomplete,
    ............
    polynomial time.......
    approximation algorithm.,.....
    polynomial time..........,..
    ...........
    ....... NP-complete...
    approximation algorithm.
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    34.5.3 The hamiltonian-cycle problem
    Theorem
    34.13 The hamiltonian cycle
    problem is NP-complete.
    ............... NP...,
    ..... G = (V, E),....
    hamiltonian cycle C,..
    C......
    ....,...
    C...........
    E.....
    .... VERTEX-COVER =HAM-CYCLE
    P
    ... hamiltonian cycle.... NPhard
    .
    34 NP-Completeness
    [u,v,1]
    [u,v,2]
    [u,v,3]
    [u,v,4]
    [u,v,5]
    [u,v,6]
    Wu v
    (a)
    [v,u,1]
    [v,u,6]
    [u,v,1]
    [u,v,6]
    Wuv
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    [v,u,1]
    [v,u,2]
    [v,u,3]
    [v,u,4]
    [v,u,5]
    [v,u,6]
    [v,u,1]
    [v,u,6]
    [u,v,1]
    [u,v,6]
    Wuv
    [v,u,1]
    [v,u,6]
    [u,v,1]
    [u,v,6]
    Wuv
    (b) (c) (d)
    Given an undirected graph G = (V, E) and
    an integer k, we construct an undirected
    graph G' = (V', E') that has a hamiltonian
    cycle if and only if G has a vertex cover of
    size k. G'....:. G.... (u,v)..
    ... 14 ..........: [u,v,1] ~
    [u,v,6],. [v,u,1]~[v,u,6].
    34 NP-Completeness
    99
    34 NP-Completeness
    (a)
    (b)
    w
    z
    x
    y
    [x,w,1]
    [x,w,6]
    [w,x,1]
    [w,x,6]
    Wuv
    [y,x,1]
    [y,x,6]
    [x,y,1]
    [x,y,6]
    Wuv
    [y,w,1]
    [y,w,6]
    [w,y,1]
    [w,y,6]
    Wuv
    [z,w,1]
    [z,w,6]
    [w,z,1]
    [w,z,6]
    Wuv
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    ..............,....
    k .
    selector verteices s1, s2, ..., sk.
    ... u.. degree(u)...,.....
    ......... u(1), u(2), ..., u(degree(u)),.
    ..
    {([u,u(i),6], [u,u(i+1),1]) : 1 = i =
    degree(u) – 1}...
    .... vertex cover .. hamiltonian
    cycle.,.... vertex cover .....
    ......... si....
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    ........, {(sj, [u,u(1),1]) : u .
    V
    , [u,u(degree(u)),6]) : u .
    V
    and1 =j= k} .
    {(sj
    and 1 = j = k}.
    .........,... |V'| = 12|E| + k
    = 12|E| + |V|,... |E'| = 14|E| + (2|E| |
    V|) + (2k|V|) = 16|E| + (2k-1)|V|
    ......... polynomial time.
    34 NP-Completeness
    34.5.4 The traveling-salesman problem
    Traveling-salesman problem(TSP): A
    salesman must visit n cities. We can say
    34.5 NP-complete problems
    34.5 NP-complete problems
    visiting
    to
    that the salesman wishes to make a tour,
    each city exactly once and
    finishing at the city he starts from. There
    is an integer cost c(i, j) to travel from city
    i city j, and the salesman wishes to
    make the tour whose total cost is
    minimum, where the total cost is the sum
    of the individual costs along the edges of
    the tour.
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    TSP = {<G,c,k : G = (V, E) is a complete
    graph, c is a function from V × V .
    Z, k .
    Z, and G has a traveling-salesman tour
    Theorem
    with cost at most k}.
    34.14 The traveling-salesman
    problem is NP-complete.
    .... TSP..... NP,.....
    TSP...,..... polynomial time
    ..................,..
    ......... cost...... k.
    34 NP-Completeness
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    ..... NP-complete... reduce.
    TSP...,.... Hamiltonian cycle
    =P TSP.
    ..... G = (V, E),.....
    complete.. G' = (V, E'), E' = {(i,j) : i,
    j .
    V and i . j},... (i,j) .
    E. c(i,j) =
    0,. (i,j) .
    E. c(i,j) = 1.
    The graph G has a hamiltonian cycle if
    and only if graph G' has a tour of cost at
    most 0.
    34 NP-Completeness
    105
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    34.5.5 The subset-sum problem
    ....
    subset-sum problem, We are
    given a finite set S .
    N and a target t .
    N.
    ..
    We ask whether there is a subset S' .
    S
    whose elements sum to t.
    S = {1, 2, 7, 14, 49, 98, 343, 686,
    2409, 2793, 16808, 17206, 117705,
    117993}. t = 138457,. S' = {1, 2, 7,
    98, 343, 686, 2409, 17206, 117705}..
    ...
    SUBSET-SUM = {<S,t : there exists a
    subset S' .
    S such that t = S
    s}.
    s.S'34 NP-Completeness
    106
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    Theorem 34.15 The subset-sum problem is
    NP-complete.
    ........ NP...,..... S' ,
    ..
    S'............ t....
    .. polynomial time......,...
    ..... NP.
    .... 3-CNF-SAT =P SUBSET-SUM..
    ...... NP-hard.
    34 NP-Completeness
    34.5 NP-complete problems34.5 NP-complete problems
    107
    Given a 3-CNF formula . over variables
    x, x, ..., x with clauses C, C, ..., C,
    12n 12k
    each containing exactly three distinct
    the reduction algorithm
    an instance <S,t of the
    problem such that . is
    literals,
    constructs
    subset-sum
    satisfiable if and only if there is a subset
    of S whose sum is exactly t.
    34 NP-Completeness
    108
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    ................,. .=
    C1 .
    C2 .
    C3 .
    C4,.. C1 = (x1 .
    ¬x2 .
    ¬x),C=(¬x.
    ¬x.
    ¬x) C=(¬x.
    32 1233 1
    .
    x),C=(x.
    x.
    x)
    234 123
    ¬x
    ...... satisfying assignment. x1
    = 0, x2= 0, x3 = 1.
    ..... subset-sum..:
    34 NP-Completeness
    109
    34 NP-Completeness
    x1 x2 x3 C1 C2 C3 C4
    v1 = 1 0 0 1 0 0 1
    v1’ = 1 0 0 0 1 1 0
    v2 = 0 1 0 0 0 0 1
    v2’ = 0 1 0 1 1 1 0
    v3 = 0 0 1 0 0 1 1
    v3’ = 0 0 1 1 1 0 0
    s1 = 0 0 0 1 0 0 0
    s1’ = 0 0 0 2 0 0 0
    s2 = 0 0 0 0 1 0 0
    s2’ = 0 0 0 0 2 0 0
    s3 = 0 0 0 0 0 1 0
    s3’ = 0 0 0 0 0 2 0
    s4 = 0 0 0 0 0 0 1
    s4’ = 0 0 0 0 0 0 2
    t = 1 1 1 4 4 4 4
    110
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    .............,.......
    .. vi. vi',.. xi. Cj...., vi
    ....
    Cj..... 1.... 0, ¬xi
    Cj...., vi'....
    Cj......
    1.... 0.
    .......... si. si',.. si. Ci
    .... 1.... 0,. si'. Ci....
    2.... 0.
    t..... n. digits. 1.. k .
    digits. 4.
    .........34 NP-Completeness
    111
    3
    334.5 N
    4.5 N4.5 NP-
    P-P-c
    cco
    oom
    mmp
    ppl
    lle
    eet
    tte
    ee p
    ppr
    rro
    oob
    bbl
    lle
    eem
    mms
    ss
    ............ subset... t
    ..,....... satisfiable.
    .. subset-sum.... NP-complete.
    34 NP-Completeness
    E
    EEx
    xxe
    eerc
    rcrci
    iis
    sse
    ees
    ss 34.5
    34.534.5
    112
    34.5-1 The subgraph-isomorphism problem
    takes two graphs G1 and G2 and asks
    whether G1 is isomorphic to a subgraph of
    G2. Show that the subgraph-isomorphism
    problem is NP-complete.
    34.5-5 The set-partition problem takes as
    input a set S of numbers. The question is
    whether the numbers can be partitioned
    34 NP-Completeness
    into two sets A and S – A such that Sx.Ax =
    Sx (.S-A)x. Show that the set-partition
    problem is NP-complete.
    E
    EEx
    xxe
    eerc
    rcrci
    iis
    sse
    ees
    ss 34.5
    34.534.5
    34.5-6 Show that the hamiltonian-path
    problem is NP-complete.
    34.5-7 The longest-simple-cycle problem is
    problem of determining a simple the
    cycle(no repeated vertices) of maximum
    length in a graph. Show that this problem
    is NP-complete.
    34 NP-Completeness
    .NP
    This proof is correct:
    When a snail scrunches does he become a 'snali'?
    No. [1] http://groups.google.com/group/sci.math/msg/c61385970bc34320?
    [2] http://buildasearch.com/meami?start=351&paginas=40&e=%20prove%20%3E%20Cook%27s%20theorem%20for%20a%20unary%20alphabet
    34 NP-Completeness 34 NP-Completeness 1971 年 Cook 提出第一個 NP-complete 問
    題. 之後,至今三十幾年、沒有人能夠找到任何一個. NP ... Prove that GRAPH- ISOMORPHISM. NP by
    describing a. polynomial-time algorithm to verify the ... csie.dyu.edu.tw/~spring/.../96_1/Algorithms/chapter34.pdf
    Research conducted and based on: http://buildasearch.com/meami http://meami.org
    Posted by M. Michael Musatov 10.22.2009
    71.130.128.163 (talk) 02:23, 23 October 2009 (UTC)M. Michael Musatov

    --- SoupGate-Win32 v1.05
    * Origin: fsxNet Usenet Gateway (21:1/5)