XPost: comp.theory, sci.logic, sci.math
// Simplified Linz Ĥ (Linz:1990:319)
// Strachey(1965) CPL translated to C
void P(u32 x)
{
if (H(x, x))
HERE: goto HERE;
}
_P()
[00000c36](01) 55 push ebp
[00000c37](02) 8bec mov ebp,esp
[00000c39](03) 8b4508 mov eax,[ebp+08] // 2nd Param
[00000c3c](01) 50 push eax
[00000c3d](03) 8b4d08 mov ecx,[ebp+08] // 1st Param
[00000c40](01) 51 push ecx
[00000c41](05) e820fdffff call 00000966 // call H
[00000c46](03) 83c408 add esp,+08
[00000c49](02) 85c0 test eax,eax
[00000c4b](02) 7402 jz 00000c4f
[00000c4d](02) ebfe jmp 00000c4d
[00000c4f](01) 5d pop ebp
[00000c50](01) c3 ret
Size in bytes:(0027) [00000c50]
Begin Local Halt Decider Simulation at Machine Address:c36
machine stack stack machine assembly
address address data code language
======== ======== ======== ========= ============= [00000c36][002117ca][002117ce] 55 push ebp [00000c37][002117ca][002117ce] 8bec mov ebp,esp [00000c39][002117ca][002117ce] 8b4508 mov eax,[ebp+08] [00000c3c][002117c6][00000c36] 50 push eax // push P [00000c3d][002117c6][00000c36] 8b4d08 mov ecx,[ebp+08] [00000c40][002117c2][00000c36] 51 push ecx // push P [00000c41][002117be][00000c46] e820fdffff call 00000966 // call H(P,P)
[00000c36][0025c1f2][0025c1f6] 55 push ebp [00000c37][0025c1f2][0025c1f6] 8bec mov ebp,esp [00000c39][0025c1f2][0025c1f6] 8b4508 mov eax,[ebp+08] [00000c3c][0025c1ee][00000c36] 50 push eax // push P [00000c3d][0025c1ee][00000c36] 8b4d08 mov ecx,[ebp+08] [00000c40][0025c1ea][00000c36] 51 push ecx // push P [00000c41][0025c1e6][00000c46] e820fdffff call 00000966 // call H(P,P)
Local Halt Decider: Infinite Recursion Detected Simulation Stopped
We can perfectly know that H(P,P) does precisely simulate the first
seven instructions of P when it simulates the first seven instructions of P.
We can also know that when it perfectly repeats this sequence again that
it has acted as a pure simulator for the execution of these two sequences.
That it is a pure simulator up to this point conclusively proves that
it is a pure simulator up to this point and conclusively proves that
a pure simulation would never halt.
2021-11-03 Update to Halt Decider Criteria
It is impossible for any halt decider to be incorrect when the correct
pure simulation of its input never halts and it reports not halting.
Halting problem undecidability and infinitely nested simulation
May 2021 PL Olcott (above is from pages 4 and 5)
https://www.researchgate.net/publication/351947980_Halting_problem_undecidability_and_infinitely_nested_simulation
--
Copyright 2021 Pete Olcott
"Great spirits have always encountered violent opposition from mediocre
minds." Einstein
--- SoupGate-Win32 v1.05
* Origin: fsxNet Usenet Gateway (21:1/5)