• Researchers confirm speed, simplicity an

    From ScienceDaily@1:317/3 to All on Tue Aug 17 21:30:44 2021
    Researchers confirm speed, simplicity and sensitivity for new COVID-19
    test

    Date:
    August 17, 2021
    Source:
    University of Birmingham
    Summary:
    Researchers have published a three way comparison study to confirm
    that the Reverse Transcriptase Free Exponential Amplification
    Reaction (RTF- EXPAR) method is just as sensitive, but faster,
    than both PCR and LAMP tests. The study revealed that the RTF-EXPAR
    method converts under 10 strands of RNA into billions of copies of
    DNA in under 10 minutes, using a one-pot assay that is compatible
    with more basic, benchtop equipment than that used with current
    testing methods.



    FULL STORY ========================================================================== Researchers from the University of Birmingham, U.K., have confirmed the
    speed, accuracy and simplicity of a novel, highly sensitive testing
    method for COVID- 19 that can be deployed at entertainment venues,
    airport arrival terminals, and in remote settings where clinical testing laboratories are not available.


    ==========================================================================
    The scientists used a three way comparison study to confirm that the Exponential Amplification Reaction (EXPAR) method is just as sensitive,
    but faster, than both PCR and LAMP tests which are currently used in
    hospital settings. The Birmingham COVID-19 test, called RTF-EXPAR, gives
    a sample-to- signal time of under 10 minutes, even for low viral levels
    where current lateral flow tests are less effective.

    Professors Tim Dafforn from the School of Biosciences, and Jim Tucker
    from the School of Chemistry, worked with graduate student Jake Carter,
    and Professor Andrew Beggs from the Institute of Cancer and Genomic
    Sciences on the study, which was published today in PNAS.

    Both PCR and LAMP tests detect viral RNA, which can be present in
    extremely low levels in swabs taken from the mouth and nose. These tests
    use a two-step process which involves first converting to RNA to DNA (a
    process called reverse transcription) and then 'amplifying' the material
    many times over so it can be detected in the sample.

    Professor Tim Dafforn said: "Both the reverse transcription and
    amplification steps slow down existing COVID assays that are based on
    nucleic acid detection, compared to antigen tests, such as lateral flow,
    which do not have these steps.

    However, while this makes lateral flow tests faster than those based on
    PCR and LAMP, in return they are typically less sensitive. An ideal test
    would be one that is both sufficiently sensitive and speedy -- our test,
    called RTF-EXPAR, achieves this goal.

    RTF-EXPAR achieves this feat in two ways -- firstly the assay
    team designed a new RNA-to-DNA conversion step that avoids reverse transcription, making it reverse transcription-free (RTF). Secondly
    their amplification step to generate the read-out signal uses EXPAR,
    an alternative DNA amplification process to PCR and LAMP.

    Professor Dafforn added: "EXPAR amplifies DNA at a single temperature,
    thus avoiding lengthy heating and cooling steps found in PCR. However,
    while LAMP also uses a single temperature for amplification, EXPAR is
    a simpler and a more direct process, in which much smaller strands are amplified. This makes EXPAR an even faster DNA amplification technique
    than not only PCR but also LAMP." The study revealed that the RTF-EXPAR
    method converts under 10 strands of RNA into billions ofcopies of DNA
    in under 10 minutes, using a one-pot assay that is compatible with more
    basic, benchtop equipment than that used with current testing methods.

    RTF-EXPAR also demonstrated significant improvements over both PCR and
    LAMP- based assays on time to signal detection. At low concentrations of
    RNA (7.25 copies/myL), the time to signal detection was 42.67 (+/- 0.47) minutes for PCR, 11.25 (+/- 0.20) minutes for LAMP, and 8.75 (+/- 0.35)
    minutes for EXPAR. At high (1450 copies/myL) concentrations of viral RNA,
    the time to signal detection was 34.00 (+/- 0.00) minutes for PCR, 11.25
    (+/- 0.20) minutes for LAMP, and 3.08 (+/- 0.42) minutes for EXPAR.

    Identification of the optimal sequence was clearly an important step in
    the development of the EXPAR method, and the sequence detected in the
    study, which comes from the Orf1ab gene in the SARS-CoV-2 genome, has
    been shown to be conserved in all current variants of COVID. However,
    the RTF-EXPAR method can be quickly adapted should new variants emerge,
    or for testing other viral pathogens such as Influenza, Respiratory
    Syncytial Virus (RSV), or Ebola, where near-patient testing is required
    to prevent more widespread transmission.

    The assay has been tested at the Surgical Research Laboratory at the
    University of Birmingham. Professor Andrew Beggs, whose team conducted
    the testing, commented: "The testing used swabs containing a typical
    range of viral loads seen during the pandemic, and had a six-minute
    cut-off time. The analysis showed RTF-EXPAR's sensitivity is equivalent
    to quantitative PCR testing, with a positive predictive value of 89%,
    and a negative predictive value of 93%. We expect to publish the full
    results of this testing in the near future." The team is now seeking commercial partners for rapid licensing, to make the RTF-EXPAR test as available as widely as possible.

    ========================================================================== Story Source: Materials provided by University_of_Birmingham. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Jake G. Carter, Lorea Orueta Iturbe, Jean-Louis H. A. Duprey, Ian R.

    Carter, Craig D. Southern, Marium Rana, Celina M. Whalley, Andrew
    Bosworth, Andrew D. Beggs, Matthew R. Hicks, James H. R. Tucker,
    Timothy R. Dafforn. Ultrarapid detection of SARS-CoV-2 RNA using
    a reverse transcription-free exponential amplification reaction,
    RTF-EXPAR.

    Proceedings of the National Academy of Sciences, 2021; 118 (35):
    e2100347118 DOI: 10.1073/pnas.2100347118 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/08/210816191328.htm

    --- up 14 weeks, 4 days, 22 hours, 45 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)