• Turning diapers into sticky notes: Using

    From ScienceDaily@1:317/3 to All on Tue Jul 27 21:30:48 2021
    Turning diapers into sticky notes: Using chemical recycling to prevent millions of tons of waste

    Date:
    July 27, 2021
    Source:
    University of Michigan
    Summary:
    Every year, 3.5 million metric tons of sodden diapers end up
    in landfills.



    FULL STORY ========================================================================== Every year, 3.5 million metric tons of sodden diapers end up in landfills.


    ==========================================================================
    The superabsorbent material inside these diapers is made up of a matrix
    of polymers that expand once dampness hits them. Polymers are a long
    chain of repeating units, and in this case, the absorbent material in
    diapers is based on the polymer polyacrylic acid.

    A University of Michigan team has developed a technique to untangle these absorbent polymers and recycle them into materials similar to the gooey adhesives used in sticky notes and bandages. Their results are published
    in Nature Communications.

    Broadly, recycling can be grouped into mechanical recycling and chemical recycling.

    "Mechanical recycling is what most people think about: You separate
    different plastics based on their identities, chop them up into small
    pieces, melt them and reuse them, which lowers the quality of the
    product," said U-M chemist Anne McNeil, corresponding author of the paper.

    Mechanical recycling leads to lower quality materials because different companies' plastics are constructed differently: The polymers can be
    different chain lengths or altered with different additives and dyes.



    ========================================================================== "There's just so many problems, everything usually gets downcycled
    and ends up as carpet fibers or park benches," said McNeil, whose lab
    focuses on the chemical recycling of plastics. "Chemical recycling
    is this idea of using chemistry and chemical transformations to make a value-added material, or at least a material as valuable as the original."
    The qualities that generally make plastics desirable, such as toughness
    and durability, are also responsible for their difficulty in recycling. In particular, polymers are difficult to break down because they are held
    together by stable bonds.

    McNeil, professor of chemistry and macromolecular science and engineering,
    and Takunda Chazovachii, who recently graduated from U-M with his
    doctoral degree in polymer chemistry, worked with Procter & Gamble to
    develop a three-step process that turns superabsorbent polymers into a
    reusable material -- in this case, adhesives. The method needed to be energy-efficient and able to be deployed on an industrial scale.

    "Superabsorbent polymers are particularly difficult to recycle because
    they are designed to resist degradation and retain water permanently," Chazovachii said.

    "The superabsorbent polymers and adhesives are both derived from
    acrylic acid.

    This common origin inspired our recycling idea." The polymers in superabsorbent materials look like a loosely woven fishing net,
    McNeil says, except instead of a honeycomb mesh, these polymers have
    a crosslink every 2,000 units, which is more than enough to create an
    insoluble network structure. To recycle these materials, the researchers
    needed to find a way to delink the network polymer into water soluble
    chains. Chazovachii found that when these polymers are heated either in
    the presence of acid or base, their crosslinks are broken.



    ==========================================================================
    The researchers also needed to determine whether these processes would be feasible on an industrial scale. Collaborators Madeline Somers, a research assistant at the U-M Graham Sustainability Institute, and Jose Alfaro,
    a researcher in the U-M School for Environment and Sustainability,
    performed a life cycle assessment. They learned that using this acid
    method to de-crosslink the polymers would exhibit a 10 times lower global warming potential, based on carbon dioxide release, and would require
    10 times less energy than using a base-mediated approach.

    Next, the researchers needed to shorten the long chains of polymers
    within the material to produce different types of adhesives. Chazovachii realized sonication -- using tiny bursting air bubbles to break the
    polymer chains - - could cut the chains in pieces without changing the
    chains' chemical properties.

    "What we really liked about this method is that it is a mild and simple mechanical process," he said. "It breaks the polymer but leaves its
    building blocks, or acid groups, intact, so you can actually do other
    reactions with it." Finally, Chazovachii, assisted by chemistry professor
    Paul Zimmerman and his student Michael Robo, converted acid groups on the polymer chains to ester groups. This changes the properties from water
    soluble to organic soluble, and they become tacky, like an adhesive. An
    extra bonus: the reagent used in this reaction, which also serves as
    the solvent, could be recycled and reused. After testing the adhesive properties, Chazovachii realized that sonication wasn't necessary to
    target one type of adhesives, further simplifying the approach.

    Finally, the researchers needed to show that developing adhesives from
    recycled polymers was easier on the planet than making adhesives from
    petroleum -- the typical route. Comparing their route to adhesives to
    the conventional one, the authors found that there is a 22% reduction
    in global warming potential and 25% reduction in energy for the route
    using recycled diapers.

    The researchers say they work with diapers that are already clean -- but companies that clean used diapers are cropping up, such as the Procter &
    Gamble affiliate FaterSMART. Additionally, Chazovachii says the conditions
    of the chemical recycling would kill any surviving bacteria.

    McNeil says she hopes that synthetic chemists who work on making reactions
    for small molecules will turn their attention to polymers.

    "This is just one paper, but I've moved most of my research in
    this direction because I think it's a really open opportunity for
    synthetic chemists to make an impact on a real-world problem,"
    McNeil said. "I want more people to be thinking about this because
    the global plastics problem is so huge and chemists can play a
    really important role in reimagining what we do with this waste." ========================================================================== Story Source: Materials provided by University_of_Michigan. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. P. Takunda Chazovachii, Madeline J. Somers, Michael T. Robo,
    Dimitris I.

    Collias, Martin I. James, E. Neil G. Marsh, Paul M. Zimmerman,
    Jose F.

    Alfaro, Anne J. McNeil. Giving superabsorbent polymers a second
    life as pressure-sensitive adhesives. Nature Communications, 2021;
    12 (1) DOI: 10.1038/s41467-021-24488-9 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/07/210727163228.htm

    --- up 11 weeks, 4 days, 22 hours, 45 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)