• New purification method could make prote

    From ScienceDaily@1:317/3 to All on Tue Feb 28 21:30:22 2023
    New purification method could make protein drugs cheaper

    Date:
    February 28, 2023
    Source:
    Massachusetts Institute of Technology
    Summary:
    Engineers devised a way to purify protein drugs during
    manufacturing.

    Their approach, which uses nanoparticles to rapidly crystallize
    proteins, could help make protein drugs more affordable and
    accessible, especially in developing countries.


    Facebook Twitter Pinterest LinkedIN Email
    FULL STORY ==========================================================================
    One of the most expensive steps in manufacturing protein drugs such as antibodies or insulin is the purification step: isolating the protein
    from the bioreactor used to produce it. This step can account for up to
    half of the total cost of manufacturing a protein.


    ==========================================================================
    In an effort to help reduce those costs, MIT engineers have devised
    a new way to perform this kind of purification. Their approach, which
    uses specialized nanoparticles to rapidly crystallize proteins, could
    help to make protein drugs more affordable and accessible, especially
    in developing countries.

    "This work uses bioconjugate-functionalized nanoparticles to act as
    templates for enhancing protein crystal formation at low concentrations,"
    says Kripa Varanasi, a professor of mechanical engineering at MIT and
    the senior author of the new study. "The goal is to reduce the cost so
    that this kind of drug manufacturing becomes affordable in the developing world." The researchers demonstrated that their approach can be used to crystallize lysozyme (an antimicrobial enzyme) and insulin. They believe
    it could also be applied to many other useful proteins, including antibody drugs and vaccines.

    MIT graduate student Caroline McCue is the lead author of the
    study, which appears today in the journal ACS Applied Materials and
    Interfaces. Henri-Louis Girard PhD '20 is also an author of the paper.

    Protein purification Antibodies and other protein drugs are part of a
    growing class of drugs known as biologics, which also include molecules
    such as DNA and RNA, as well as cell-based therapies. Most protein drugs
    are produced by living cells such as yeast in large bioreactors.

    Once these proteins are generated, they have to be isolated
    from the reactor, which is usually done through a process called chromatography. Chromatography, which separates proteins based on their
    size, requires specialized materials that make the process very expensive.

    Varanasi and his colleagues decided to try a different approach, based on protein crystallization. Researchers often crystallize proteins to study
    their structures, but the process is considered too slow for industrial
    use and doesn't work well at low concentrations of protein. To overcome
    those obstacles, Varanasi's lab set out to use nanoscale structures to
    speed up the crystallization.

    In previous work, the lab has used nanoscale features to create
    materials that repel water or to modify interfaces for injecting highly
    viscous biologic drugs. In this case, the researchers wanted to adapt nanoparticles so that they could locally increase the concentration of
    protein at the surface and also provide a template that would allow the proteins to align correctly and form crystals.

    To create the surface they needed, the researchers coated gold
    nanoparticles with molecules called bioconjugates -- materials that can
    help form links between other molecules. For this study, the researchers
    used bioconjugates called maleimide and NHS, which are commonly used for tagging proteins for study or attaching protein drugs to drug-delivering nanoparticles.

    When solutions of proteins are exposed to these coated
    nanoparticles, the proteins accumulate at the surface and bind to the bioconjugates. Furthermore, the bioconjugates compel the proteins to
    align themselves with a specific orientation, creating a scaffold for additional proteins to come along and join the crystal.

    The researchers demonstrated their approach with lysozyme, an enzyme
    whose crystallization properties have been well studied, and insulin. They
    say it could also be applied to many other proteins.

    "This is a general approach that could be scaled to other systems as
    well. If you know the protein structure that you're trying to crystallize,
    you can then add the right bioconjugates that will force this process
    to happen," Varanasi says.

    Rapid crystallization In their studies with lysozyme and insulin, the researchers found that crystallization occurred much faster when the
    proteins were exposed to the bioconjugate-coated nanoparticles, compared
    to bare nanoparticles or no nanoparticles. With the coated particles,
    the researchers saw a sevenfold reduction in the induction time -- how
    long it takes for crystals to begin forming -- and a threefold increase in
    the nucleation rate, which is how quickly the crystals grow once started.

    "Even at low protein concentrations, we see a lot more crystals forming
    with these bioconjugate-functionalized nanoparticles," McCue says. "The functionalized nanoparticles reduce the induction time so much because
    these bioconjugates are providing a specific site for the proteins
    to bind. And because the proteins are aligned, they can form a crystal
    faster." In addition, the team used machine learning to analyze thousands
    of images of crystals. "Protein crystallization is a stochastic process,
    so we needed to have a huge dataset to be able to really measure whether
    our approach was improving the induction time and nucleation rate of crystallization. With so many images to process, machine learning is the
    best way to be able to determine when crystals are forming in each image without having to go through and manually count each one," McCue says.

    This project is part of a Bill and Melinda Gates Foundation effort to make biologic drugs, such as prophylactic antibodies that have been shown to
    prevent malaria in clinical trials, more widely available in developing nationsThe MIT team is now working on scaling up the process so that
    it could be used in an industrial bioreactor, and demonstrating that it
    can work with monoclonal antibodies, vaccines, and other useful proteins.

    "If we can make it easier to manufacture these proteins anywhere, then
    everyone in the world can benefit," Varanasi says. "We are not saying
    that this is going to be solved tomorrow because of us, but this is a
    small step that can contribute to that mission." In addition to the
    Gates Foundation, the research was partly funded by a National Science Foundation Graduate Research Fellowship.

    * RELATED_TOPICS
    o Health_&_Medicine
    # Human_Biology # Prostate_Cancer # Pharmacology #
    HIV_and_AIDS
    o Matter_&_Energy
    # Biochemistry # Organic_Chemistry # Nature_of_Water #
    Nanotechnology
    * RELATED_TERMS
    o Soy_protein o Analgesic o Collagen o Protein
    o Protein_structure o Protein_microarray o
    Denaturation_(biochemistry) o Antiretroviral_drug

    ========================================================================== Story Source: Materials provided by
    Massachusetts_Institute_of_Technology. Original written by Anne
    Trafton. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Caroline McCue, Henri-Louis Girard, Kripa K. Varanasi. Enhancing
    Protein
    Crystal Nucleation Using In Situ Templating on Bioconjugate-
    Functionalized Nanoparticles and Machine Learning. ACS Applied
    Materials & Interfaces, 2023; DOI: 10.1021/acsami.2c17208 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/02/230228154519.htm

    --- up 1 year, 1 day, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)