• Experiments measure freezing point of ex

    From ScienceDaily@1:317/3 to All on Tue May 3 22:30:42 2022
    Experiments measure freezing point of extraterrestrial oceans to aid
    search for life

    Date:
    May 3, 2022
    Source:
    University of Washington
    Summary:
    A planetary scientist worked with engineers to measure the physical
    limits for a liquid when salty water is at very high pressure. The
    results suggest where to look for extraterrestrial life in the ice-
    covered oceans of Jupiter's moon Europa and Saturn's moon Titan.



    FULL STORY ========================================================================== Researchers from the University of Washington and the University
    of California, Berkeley have conducted experiments that measured the
    physical limits for the existence of liquid water in icy extraterrestrial worlds. This blend of geoscience and engineering was done to aid in the
    search for extraterrestrial life and the upcoming robotic exploration
    of oceans on moons of other planets.


    ==========================================================================
    The results were recently published in Cell Reports Physical Sciences.

    "The more a liquid is stable, the more promising it is for habitability,"
    said co-corresponding author Baptiste Journaux, an acting assistant
    professor of Earth and space sciences at the UW. "Our results show that
    the cold, salty, high-pressure liquids found in the deep ocean of other planets' moons can remain liquid to much cooler temperature than they
    would at lower pressures.

    This extends the range of possible habitats on icy moons, and will
    allow us to pinpoint where we should look for biosignatures, or signs
    of life." Jupiter and Saturn's icy moons -- including Europa, Ganymede
    and Titan -- are leading candidates within our solar system for hosting extraterrestrial life.

    These ice-encrusted moons are thought to harbor enormous liquid oceans,
    up to several dozen times the volume of oceans on Earth.

    "Despite its designation as the 'blue marble,' Earth is remarkably dry
    when compared to these worlds," Journaux said.

    The oceans on these moons may contain various types of salts and are
    expected to range from about 100 miles deep, on Europa, to more than
    400 miles deep, on Titan.



    ==========================================================================
    "We know that water supports life, but the major part of the oceans
    on these moons are likely below zero degrees Celsius and at pressures
    higher than anything experienced on Earth," Journaux said. "We needed
    to know how cold an ocean can get before entirely freezing, including
    in its deepest abyss." The study focused on eutectics, or the lowest temperature that a salty solution can remain liquid before entirely
    freezing. Salt and water are one example - - salty water remains liquid
    below the freezing temperature of pure water, one of the reasons people sprinkle salt on roads in winter to avoid the formation of ice.

    The experiments used UC Berkeley equipment originally designed for the
    future cryopreservation of organs for medical applications and for food storage. For this research, however, the authors used it to simulate
    the conditions thought to exist on other planets' moons.

    Journaux, a planetary scientist and expert on the physics of water and minerals, worked with UC Berkeley engineers to test solutions of five
    different salts at pressures up to 3,000 times atmospheric pressure,
    or 300 megapascals - - about three times the pressure in Earth's deepest
    ocean trench.

    "Knowing the lowest temperature possible for salty water to remain a
    liquid at high pressures is integral to understanding how extraterrestrial
    life could exist and thrive in the deep oceans of these icy ocean worlds,"
    said co- corresponding author Matthew Powell-Palm, who did the work as
    a postdoctoral researcher at UC Berkeley, also co-founder and CEO of
    the cryopreservation company BioChoric, Inc.

    Journaux recently started working with NASA's Dragonfly mission team,
    which will send a rotorcraft in 2027 to Saturn's largest moon, Titan. NASA
    also is leading the Europa Clipper mission in 2024 to explore Europa, one
    of the many moons orbiting Jupiter. Meanwhile, the European Space Agency
    in 2023 will send its JUICE spacecraft, or Jupiter Icy Moons Explorer, to explore three of Jupiter's largest moons: Ganymede, Callisto and Europa.

    "The new data obtained from this study may help further researchers' understanding of the complex geological processes observed in these icy
    ocean worlds," Journaux said.

    Other authors are Boris Rubinsky, Brooke Chang, Anthony Consiglio,
    Drew Lilley and Ravi Prasher, all at UC Berkeley. The study was funded
    by the National Science Foundation and NASA.


    ========================================================================== Story Source: Materials provided by University_of_Washington. Original
    written by Hannah Hickey. Note: Content may be edited for style and
    length.


    ========================================================================== Related Multimedia:
    * Europa ========================================================================== Journal Reference:
    1. Brooke Chang, Anthony N. Consiglio, Drew Lilley, Ravi Prasher, Boris
    Rubinsky, Baptiste Journaux, Matthew J. Powell-Palm. On the
    pressure dependence of salty aqueous eutectics. Cell Reports
    Physical Science, 2022; 100856 DOI: 10.1016/j.xcrp.2022.100856 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/05/220503190146.htm

    --- up 9 weeks, 1 day, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)