• Researchers develop smartphone-powered m

    From ScienceDaily@1:317/3 to All on Mon May 2 22:30:40 2022
    Researchers develop smartphone-powered microchip for at-home medical diagnostic testing
    The new technology could make at-home diagnosis of diseases faster and
    more affordable

    Date:
    May 2, 2022
    Source:
    University of Minnesota
    Summary:
    A research team has developed a new microfluidic chip for
    diagnosing diseases that uses a minimal number of components and
    can be powered wirelessly by a smartphone. The innovation opens
    the door for faster and more affordable at-home medical testing.



    FULL STORY ==========================================================================
    A University of Minnesota Twin Cities research team has developed a new microfluidic chip for diagnosing diseases that uses a minimal number of components and can be powered wirelessly by a smartphone. The innovation
    opens the door for faster and more affordable at-home medical testing.


    ==========================================================================
    The researchers' paper is published in Nature Communications, a
    peer-reviewed, open access, scientific journal published by Nature
    Research. Researchers are also working to commercialize the technology.

    Microfluidics involves the study and manipulation of liquids at a
    very small scale. One of the most popular applications in the field
    is developing "lab-on- a-chip" technology, or the ability to create
    devices that can diagnose diseases from a very small biological sample,
    blood or urine, for example.

    Scientists already have portable devices for diagnosing some conditions
    - - rapid COVID-19 antigen tests, for one. However, a big roadblock to engineering more sophisticated diagnostic chips that could, for example, identify the specific strain of COVID-19 or measure biomarkers like
    glucose or cholesterol, is the fact that they need so many moving parts.

    Chips like these would require materials to seal the liquid inside,
    pumps and tubing to manipulate the liquid, and wires to activate those
    pumps -- all materials that are difficult to scale down to the micro
    level. Researchers at the University of Minnesota Twin Cities were able
    to create a microfluidic device that functions without all of those
    bulky components.

    "Researchers have been extremely successful when it comes to electronic
    device scaling, but the ability to handle liquid samples has not kept up,"
    said Sang- Hyun Oh, a professor in the University of Minnesota Twin Cities Department of Electrical and Computer Engineering and senior author of the study. "It's not an exaggeration that a state-of-the-art, microfluidic lab-on-a-chip system is very labor intensive to put together. Our
    thought was, can we just get rid of the cover material, wires, and pumps altogether and make it simple?" Many lab-on-a-chip technologies work by
    moving liquid droplets across a microchip to detect the virus pathogens
    or bacteria inside the sample. The University of Minnesota researchers' solution was inspired by a peculiar real- world phenomenon with which wine drinkers will be familiar -- the "legs," or long droplets that form inside
    a wine bottle due to surface tension caused by the evaporation of alcohol.



    ========================================================================== Using a technique pioneered by Oh's lab in the early 2010s, the
    researchers placed tiny electrodes very close together on a 2 cm by 2 cm
    chip, which generate strong electric fields that pull droplets across the
    chip and create a similar "leg" of liquid to detect the molecules within.

    Because the electrodes are placed so closely together (with only 10
    nanometers of space between), the resulting electric field is so strong
    that the chip only needs less than a volt of electricity to function. This incredibly low voltage required allowed the researchers to activate the diagnostic chip using near- field communication signals from a smartphone,
    the same technology used for contactless payment in stores.

    This is the first time researchers have been able to use a smartphone
    to wirelessly activate narrow channels without microfluidic structures,
    paving the way for cheaper, more accessible at-home diagnostic devices.

    "This is a very exciting, new concept," said Christopher Ertsgaard, lead
    author of the study and a recent CSE alumnus (ECE Ph.D. '20). "During
    this pandemic, I think everyone has realized the importance of at-home,
    rapid, point-of-care diagnostics. And there are technologies available,
    but we need faster and more sensitive techniques. With scaling and
    high-density manufacturing, we can bring these sophisticated technologies
    to at-home diagnostics at a more affordable cost." Oh's lab is working
    with Minnesota startup company GRIP Molecular Technologies, which
    manufactures at-home diagnostic devices, to commercialize the microchip platform. The chip is designed to have broad applications for detecting viruses, pathogens, bacteria, and other biomarkers in liquid samples.

    "To be commercially successful, in-home diagnostics must be low-cost and
    easy- to-use," said Bruce Batten, founder and president of GRIP Molecular Technologies. "Low voltage fluid movement, such as what Professor Oh's
    team has achieved, enables us to meet both of those requirements. GRIP
    has had the good fortune to collaborate with the University of Minnesota
    on the development of our technology platform. Linking basic and
    translational research is crucial to developing a pipeline of innovative, transformational products." In addition to Oh and Ertsgaard, the
    research team included University of Minnesota Department of Electrical
    and Computer Engineering alumni Daniel Klemme (Ph.D. '19) and Daehan Yoo
    (Ph.D. '16) and Ph.D. student Peter Christenson.

    This research was supported by the National Science Foundation
    (NSF). Oh received support from the Sanford P. Bordeau Endowed
    Chair at the University of Minnesota and the McKnight University
    Professorship. Device fabrication was performed in the Minnesota Nano
    Center at the University of Minnesota, which is supported by NSF through
    the National Nanotechnology Coordinated Infrastructure (NNCI).


    ========================================================================== Story Source: Materials provided by University_of_Minnesota. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Christopher T. Ertsgaard, Daehan Yoo, Peter R. Christenson,
    Daniel J.

    Klemme, Sang-Hyun Oh. Open-channel microfluidics via resonant
    wireless power transfer. Nature Communications, 2022; 13 (1) DOI:
    10.1038/s41467- 022-29405-2 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/05/220502094748.htm

    --- up 9 weeks, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)