• Nanoplastic particles love company: Rese

    From ScienceDaily@1:317/3 to All on Wed Apr 27 22:30:50 2022
    Nanoplastic particles love company: Researchers analyze polyethylene degradation in environment

    Date:
    April 27, 2022
    Source:
    Universita"t Bayreuth
    Summary:
    Polyethylene accounts for nearly one-third of the world's plastic
    waste.

    An interdisciplinary team has now investigated the progressive
    degradation of polyethylene in the environment for the first time.

    Although the degradation process leads to fragmentation into ever
    smaller particles, isolated nanoplastic particles are rarely found
    in the environment. The reason is that such decay products do not
    like to remain on their own, but rather attach rapidly to larger
    colloidal systems that occur naturally in the environment.



    FULL STORY ========================================================================== Polyethylene, a plastic that is both cheap and easy to process,
    accounts for nearly one-third of the world's plastic waste. An interdisciplinary team from the University of Bayreuth has investigated
    the progressive degradation of polyethylene in the environment for the
    first time. Although the degradation process leads to fragmentation into
    ever smaller particles, isolated nanoplastic particles are rarely found
    in the environment. The reason is that such decay products do not like
    to remain on their own, but rather attach rapidly to larger colloidal
    systems that occur naturally in the environment.

    The researchers have now presented their findings in the journal Science
    of the Total Environment.


    ========================================================================== Polyethylene is a plastic that occurs in various molecular
    structures. Low- density polyethylene (LDPE) is widely used for packaging everyday consumer goods, such as food, and is one of the most common
    polymers worldwide as a result of increasing demand. Until now, there
    have only been estimates as to how this widely used plastic degrades
    after it enters the environment as waste.

    A research team from the Collaborative Research Centre "Microplastics"
    at the University of Bayreuth has now systematically investigated
    this question for the first time. The scientists developed a novel,
    technically sophisticated experimental set-up for this purpose. This
    makes it possible to simulate two well-known and environmentally
    linked processes of plastic degradation independently in the laboratory:
    1.) photo-oxidation, in which the long polyethylene chains gradually break
    down into smaller, more water-soluble molecules when exposed to light,
    and 2.) increasing fragmentation due to mechanical stress. On this basis,
    it was possible to gain detailed insights into the complex physical and chemical processes of LDPE degradation.

    The final stage of LDPE degradation is of particular interest for studies addressing the potential impact of polyethylene on the environment. What
    the researchers discovered was that this degradation does not end with
    the decomposition of the packaging material released into the environment
    into many micro- and nanoplastic particles, which have a high degree
    of crystallinity.

    The reason is that these tiny particles have a strong tendency to
    aggregate: they attach rapidly to larger colloidal systems consisting
    of organic or inorganic molecules and are part of the material cycle in
    the environment.

    Examples of such colloidal systems include clay minerals, humic acids, polysaccharides, and biological particles from bacteria and fungi. "This process of aggregation prevents individual nanoparticles created by polyethylene degradation from being freely available in the environment
    and interacting with animals and plants. However, this is not an 'all
    clear' signal. Larger aggregates that participate in the material cycle
    in the environment and contain nanoplastics do often get ingested by
    living organisms.

    That is how nanoplastics can eventually enter the food chain," says
    Teresa Menzel, one of the three lead authors of the new study and a
    doctoral researcher in the field of polymer materials.

    To identify the degradation products formed when polyethylene decomposes,
    the researchers employed a method that has not been widely used in microplastics research: multi-cross-polarization in solid-state NMR spectroscopy. "This method even allows us to quantify the degradation
    products yielded by photooxidation," says co-author Anika Mauel, a
    doctoral researcher in inorganic chemistry.

    Bayreuth's researchers have also discovered that the degradation and decomposition of polyethylene also leads to the formation of peroxides.

    "Peroxides have long been suspected of being cytotoxic, meaning they
    have a toxic effect on living cells. That is another way in which
    LDPE degradation poses a potential threat to natural ecosystems. These interrelationships need to be studied in more detail in the future," adds co-author Nora Meides, a doctoral researcher in macromolecular chemistry.

    The detailed analysis of the chemical and physical processes involved
    in the degradation of polyethylene would not have been possible
    without the interdisciplinary networking and coordinated use of state-of-the-art research technologies on the University of Bayreuth's
    campus. In particular, these include scanning electron microscopy (SEM),
    energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD),
    NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC).


    ========================================================================== Story Source: Materials provided by Universita"t_Bayreuth. Note: Content
    may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Teresa Menzel, Nora Meides, Anika Mauel, Ulrich Mansfeld, Winfried
    Kretschmer, Meike Kuhn, Eva M. Herzig, Volker Altsta"dt, Peter
    Strohriegl, Ju"rgen Senker, Holger Ruckda"schel. Degradation of
    low- density polyethylene to nanoplastic particles by accelerated
    weathering.

    Science of The Total Environment, 2022; 826: 154035 DOI: 10.1016/
    j.scitotenv.2022.154035 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220427124259.htm

    --- up 8 weeks, 2 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)