• Why Venus rotates, slowly, despite sun's

    From ScienceDaily@1:317/3 to All on Wed Apr 20 22:30:50 2022
    Why Venus rotates, slowly, despite sun's powerful grip
    Planet's atmosphere explains the gravity of the situation

    Date:
    April 20, 2022
    Source:
    University of California - Riverside
    Summary:
    If not for the soupy, fast-moving atmosphere on Venus, Earth's
    sister planet would likely not rotate. Instead, Venus would be
    locked in place, always facing the sun the way the same side of
    the moon always faces Earth.



    FULL STORY ==========================================================================
    If not for the soupy, fast-moving atmosphere on Venus, Earth's sister
    planet would likely not rotate. Instead, Venus would be locked in place,
    always facing the sun the way the same side of the moon always faces
    Earth.


    ==========================================================================
    The gravity of a large object in space can keep a smaller object from
    spinning, a phenomenon called tidal locking. Because it prevents this
    locking, a UC Riverside scientist argues the atmosphere needs to be a
    more prominent factor in studies of Venus as well as other planets.

    These arguments, as well as descriptions of Venus as a partially tidally
    locked planet, were published today in a Nature Astronomy article.

    "We think of the atmosphere as a thin, almost separate layer on top
    of a planet that has minimal interaction with the solid planet," said
    Stephen Kane, UCR astrophysicist and lead paper author. "Venus' powerful atmosphere teaches us that it's a much more integrated part of the planet
    that affects absolutely everything, even how fast the planet rotates."
    Venus takes 243 Earth days to rotate one time, but its atmosphere
    circulates the planet every four days. Extremely fast winds cause the atmosphere to drag along the surface of the planet as it circulates,
    slowing its rotation while also loosening the grip of the sun's gravity.

    Slow rotation in turn has dramatic consequences for the sweltering
    Venusian climate, with average temperatures of up to 900 degrees
    Fahrenheit -- hot enough to melt lead.



    ========================================================================== "It's incredibly alien, a wildly different experience than being on
    Earth," Kane said. "Standing on the surface of Venus would be like
    standing at the bottom of a very hot ocean. You couldn't breathe on it."
    One reason for the heat is that nearly all of the sun's energy absorbed
    by the planet is soaked up by Venus' atmosphere, never reaching the
    surface. This means that a rover with solar panels like the one NASA
    sent to Mars wouldn't work.

    The Venusian atmosphere also blocks the sun's energy from leaving the
    planet, preventing cooling or liquid water on its surface, a state known
    as a runaway greenhouse effect.

    It is unclear whether being partially tidally locked contributes to this runaway greenhouse state, a condition which ultimately renders a planet uninhabitable by life as we know it.

    Not only is it important to gain clarity on this question to understand
    Venus, it is important for studying the exoplanets likely to be targeted
    for future NASA missions.



    ==========================================================================
    Most of the planets likely to be observed with the recently launched
    James Webb Space Telescope are very close to their stars, even closer than Venus is to the sun. Therefore, they're also likely to be tidally locked.

    Since humans may never be able to visit exoplanets in person, making
    sure computer models account for the effects of tidal locking is
    critical. "Venus is our opportunity to get these models correct, so we
    can properly understand the surface environments of planets around other stars," Kane said.

    "We aren't doing a good job of considering this right now. We're mostly
    using Earth-type models to interpret the properties of exoplanets. Venus
    is waving both arms around saying, 'look over here!'" Gaining clarity
    about the factors that contributed to a runaway greenhouse state on Venus, Earth's closest planetary neighbor, can also help improve models of what
    could one day happen to Earth's climate.

    "Ultimately, my motivation in studying Venus is to better understand
    the Earth," Kane said.


    ========================================================================== Story Source: Materials provided by
    University_of_California_-_Riverside. Original written by Jules
    Bernstein. Note: Content may be edited for style and length.


    ========================================================================== Related Multimedia:
    * Venus_and_path_of_Venus_across_the_sun.

    ========================================================================== Journal Reference:
    1. Stephen R. Kane. Atmospheric dynamics of a near tidally locked
    Earth-
    sized planet. Nature Astronomy, 2022; DOI:
    10.1038/s41550-022-01626-x ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220420092119.htm

    --- up 7 weeks, 2 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)