• Edible, fluorescent silk tags can suss o

    From ScienceDaily@1:317/3 to All on Wed Apr 13 22:30:46 2022
    Edible, fluorescent silk tags can suss out fake medications

    Date:
    April 13, 2022
    Source:
    American Chemical Society
    Summary:
    Recent developments such as the explosion of online pharmacies
    and supply chain issues have made it easier for counterfeiters to
    profit from fake or adulterated medications. Now, researchers have
    created edible tags with fluorescent silk proteins, which could be
    placed directly on pills or in a liquid medicine. The codes within
    the tags can be read by a smartphone app to verify the source and
    quality of these pharmaceuticals.



    FULL STORY ========================================================================== Recent developments such as the explosion of online pharmacies and supply
    chain issues have made it easier for counterfeiters to profit from fake
    or adulterated medications. Now, researchers reporting in ACS Central
    Science have created edible tags with fluorescent silk proteins, which
    could be placed directly on pills or in a liquid medicine. The codes
    within the tags can be read by a smartphone app to verify the source
    and quality of these pharmaceuticals.


    ========================================================================== Online pharmacies have taken off in recent years, delivering many types
    of medications directly to consumers' homes. Some of these businesses are legitimate, but others operate illegally, supplying counterfeit drugs that
    are substandard, incorrectly labeled or laced with unwanted components. In addition, global supply chain problems have made it easy for fake
    medications to infiltrate the market. To instill trust in consumers,
    pharma companies label the outside packaging of their products with bar
    codes, QR codes, holograms and radio frequency identifiers, allowing distributors and retailers to manage products throughout the supply
    chain. Yet there aren't equivalent codes for consumers to verify the
    source of individual pills or liquid doses inside a container. Researchers
    have developed fluorescent synthetic materials, such as microfibers and nanoparticles, as tracking codes, but the substances are potentially
    unsafe to consume. So, Seong-Wan Kim, Young Kim and colleagues wanted to
    see whether silk, which is an edible and "generally recognized as safe" material, could be placed directly onto medications and made to fluoresce, helping consumers make sure their purchases are what they claim to be.

    The researchers genetically modified silkworms to produce silk fibroins -
    - edible proteins that gives silk fibers their strength -- with either
    a cyan, green or red fluorescent protein attached. They dissolved the fluorescent silk cocoons to create fluorescent polymer solutions, which
    they applied onto a thin, 9-mm-wide film of white silk in a seven-by-seven grid. Shining blue violet, blue, and green light onto the grid revealed
    the 3D cyan, green and red square patterns, respectively. Using optical
    filters over the phone's camera, an app the team designed can scan the fluorescent pattern, decoding the digitized key using a deep learning
    algorithm and opening up a webpage, which could host information about the drug's source and authenticity. And because some liquid medications are alcohol-based, the researchers placed a coded silk film in a clear bottle
    of Scotch whisky, and found that the fluorescent code was still readable
    with the app. Finally, the researchers showed that the fluorescent silk proteins are broken down by gastrointestinal enzymes, suggesting that the
    silk codes are not only edible but also can be digested by the body. The researchers say that placing these edible code applique's onto pills
    or in liquid doses could empower patients and their care providers to
    avoid the unintentional consumption of fake treatments.

    The authors acknowledge funding from the Cooperative Research Program
    for Agriculture Science & Technology Development from Rural Development Administration of the Republic of Korea, the U.S. Air Force Office of Scientific Research and the Trask Innovation Fund from Purdue University.


    ========================================================================== Story Source: Materials provided by American_Chemical_Society. Note:
    Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Jung Woo Leem, Hee-Jae Jeon, Yuhyun Ji, Sang Mok Park, Yunsang Kwak,
    Jongwoo Park, Kee-Young Kim, Seong-Wan Kim, Young L. Kim. Edible
    Matrix Code with Photogenic Silk Proteins. ACS Central Science,
    2022; DOI: 10.1021/acscentsci.1c01233 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220413090940.htm

    --- up 6 weeks, 2 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)