• Genomic time machine in sea sponges

    From ScienceDaily@1:317/3 to All on Wed Apr 13 22:30:46 2022
    Genomic time machine in sea sponges

    Date:
    April 13, 2022
    Source:
    University of New Hampshire
    Summary:
    Sponges in coral reefs, less flashy than their coral neighbors but
    important to the overall health of reefs, are among the earliest
    animals on the planet. New research examines coral reef ecosystems
    with a novel approach to understanding the complex evolution of
    sponges and the microbes that live in symbiosis with them. With
    this 'genomic time machine,' researchers can predict aspects of
    reef and ocean ecosystems through hundreds of millions of years
    of dramatic evolutionary change.



    FULL STORY ========================================================================== Sponges in coral reefs, less flashy than their coral neighbors but
    important to the overall health of reefs, are among the earliest
    animals on the planet. New research from the University of New Hampshire examines coral reef ecosystems with a novel approach to understanding
    the complex evolution of sponges and the microbes that live in symbiosis
    with them. With this "genomic time machine," researchers can predict
    aspects of reef and ocean ecosystems through hundreds of millions of
    years of dramatic evolutionary change.


    ========================================================================== "This work shows how microbiomes have evolved in a group of organisms over
    700 million years old," said Sabrina Pankey, a postdoctoral researcher
    and lead author of the study. "Sponges are increasing in abundance on
    reefs in response to climate change and they play an enormous role in
    water quality and nutrient fixation." In the study, recently published
    in the journal Nature Ecology & Evolution, the significance of the work transcends sponges, providing a new approach to understanding the past
    based on genomics. The researchers characterized almost 100 sponge
    species from across the Caribbean using a machine-learning method to
    model the identity and abundance of every member of the sponges' unique microbiomes, the community of microbes and bacteria that live within them
    in symbiosis. They found two distinct microbiome compositions that led to different strategies sponges used for feeding (sponges capture nutrients
    by pumping water through their bodies) and protecting themselves against predators -- even among species that grew side by side on a reef.

    "If we can reconstruct the evolutionary history of complex microbial communities like this, we can say a lot about the Earth's past,"
    said David Plachetzki, associate professor of molecular, cellular and biomedical sciences and study co-author. "Research like this could reveal aspects of the chemical composition of the Earth's oceans going back to
    before modern coral reefs even existed, or it could provide insights on
    the tumult that marine ecosystems experienced in the aftermath of the
    greatest extinction in history that took place about 252 million years
    ago." The types of symbiotic communities the researchers describe in
    this paper are very complex, yet they can show they evolved independently multiple times. They say that there is something very specific about
    what these microbial communities are doing. Sponges dozens of times have decided that this diverse arrangement of microbes works for them.

    Leveraging this new genomic approach, the researchers found that the
    origin of one of these distinct microbiomes, which had a high microbial abundance (HMA) of more than a billion microbes per gram of tissue,
    occurred at a time when the Earth's oceans underwent a significant change
    in biogeochemistry coincident with the origins of modern coral reefs.

    The project was funded by National Science Foundation Dimensions of Biodiversity and Biological Oceanography Program.

    The University of New Hampshire inspires innovation and transforms
    lives in our state, nation and world. More than 16,000 students from
    all 50 states and 71 countries engage with an award-winning faculty
    in top-ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of
    study. A Carnegie Classification R1 institution, UNH partners with NASA,
    NOAA, NSF and NIH, and received $260 million in competitive external
    funding in FY21 to further explore and define the frontiers of land,
    sea and space.


    ========================================================================== Story Source: Materials provided by University_of_New_Hampshire. Original written by Beth Potier. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. M. Sabrina Pankey, David C. Plachetzki, Keir J. Macartney, Marianela
    Gastaldi, Marc Slattery, Deborah J. Gochfeld, Michael P. Lesser.

    Cophylogeny and convergence shape holobiont evolution in
    sponge-microbe symbioses. Nature Ecology & Evolution, 2022; DOI:
    10.1038/s41559-022- 01712-3 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220413203126.htm

    --- up 6 weeks, 2 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)