• `Freeze-thaw battery' is adept at preser

    From ScienceDaily@1:317/3 to All on Tue Apr 5 22:30:38 2022
    `Freeze-thaw battery' is adept at preserving its energy
    Molten-salt battery marks step toward seasonal storage of grid-scale
    energy

    Date:
    April 5, 2022
    Source:
    DOE/Pacific Northwest National Laboratory
    Summary:
    Scientists have created a battery designed for the electric
    grid that locks in energy for months without losing much storage
    capacity. It's a step toward batteries that can be used for seasonal
    storage: saving renewable energy in one season, such as the spring,
    and spending it in another, like autumn.



    FULL STORY ========================================================================== Scientists have created a battery designed for the electric grid that
    locks in energy for months without losing much storage capacity.


    ==========================================================================
    The development of the "freeze-thaw battery," which freezes its energy
    for use later, is a step toward batteries that can be used for seasonal storage: saving energy in one season, such as the spring, and spending
    it in another, like autumn.

    The prototype is small, about the size of a hockey puck. But the potential usefulness of the science behind the device is vast, foretelling a
    time when energy from intermittent sources, like sunshine and wind,
    can be stored for a long time. The work by scientists at the Department
    of Energy's Pacific Northwest National Laboratory was published online
    March 23 in Cell Reports Physical Science.

    "Longer-duration energy storage technologies are important for increasing
    the resilience of the grid when incorporating a large amount of renewable energy," said Imre Gyuk, director of Energy Storage at DOE's Office of Electricity, which funded the work. "This research marks an important
    step toward a seasonal battery storage solution that overcomes the self-discharge limitations of today's battery technologies." Harnessing
    and packaging nature's energy Renewable sources ebb and flow with
    nature's cycles. That makes it difficult to include them in a reliable,
    steady stream of electricity. In the Pacific Northwest in the spring,
    for instance, rivers heavy with runoff power hydroelectric dams to the
    max just as winds blow fiercely down the Columbia Gorge. All that power
    must be harnessed immediately or stored for a few days at most.



    ==========================================================================
    Grid operators would love to harness that springtime energy, store it
    in large batteries, then release it late in the year when the region's
    winds are slow, the rivers are low, and demand for electricity peaks.

    The batteries would also enhance utilities' ability to weather a power
    outage during severe storms, making large amounts of energy available
    to be fed into the grid after a hurricane, a wildfire or other calamity.

    "It's a lot like growing food in your garden in the spring, putting the
    extra in a container in your freezer, and then thawing it out for dinner
    in the winter," said first author Minyuan "Miller" Li.

    The battery is first charged by heating it up to 180 degrees Celsius,
    allowing ions to flow through the liquid electrolyte to create chemical
    energy. Then, the battery is cooled to room temperature, essentially
    locking in the battery's energy. The electrolyte becomes solid and the
    ions that shuttle energy stay nearly still. When the energy is needed,
    the battery is reheated and the energy flows.

    The freeze-thaw phenomenon is possible because the battery's electrolyte
    is molten salt -- a molecular cousin of ordinary table salt. The material
    is liquid at higher temperatures but solid at room temperature.



    ==========================================================================
    The freeze-thaw concept dodges a problem familiar to anyone who has let
    their car sit unused for too long: a battery that self-discharges as it
    sits idle. A fast discharge rate, like that of batteries in most cars
    or laptops, would hamper a grid battery designed to store energy for
    months. Notably, the PNNL freeze-thaw battery has retained 92 percent
    of its capacity over 12 weeks.

    In other words, the energy doesn't degrade much; it's preserved, just
    like food in a freezer.

    Ordinary ingredients a plus The team avoided rare, expensive and highly reactive materials. Instead, the aluminum-nickel molten-salt battery is
    chock full of Earth-abundant, common materials. The anode and cathode are
    solid plates of aluminum and nickel, respectively. They're immersed in a
    sea of molten-salt electrolyte that is solid at room temperature but flows
    as a liquid when heated. The team added sulfur -- another common, low-cost element -- to the electrolyte to enhance the battery's energy capacity.

    One of the biggest advantages of the battery is the composition of
    a component, called a separator, placed between the anode and the
    cathode. Most higher- temperature molten-salt batteries require a ceramic separator, which can be more expensive to make and susceptible to breakage during the freeze-thaw cycle. The PNNL battery uses simple fiberglass,
    possible because of the battery's stable chemistry. This cuts costs and
    makes the battery sturdier when undergoing freeze-thaw cycles.

    "Reducing battery costs is critical. That is why we've chosen common,
    less- expensive materials to work with, and why we focused on removing
    the ceramic separator," said corresponding author Guosheng Li, who led
    the study.

    The battery's energy is stored at a materials cost of about $23 per
    kilowatt hour, measured before a recent jump in the cost of nickel. The
    team is exploring the use of iron, which is less expensive, in hopes of bringing the materials cost down to around $6 per kilowatt hour, roughly
    15 times less than the materials cost of today's lithium-ion batteries.

    The battery's theoretical energy density is 260 watt-hours per kilogram -
    - higher than today's lead-acid and flow batteries.

    Researchers point out that batteries designed for seasonal storage would
    likely charge and discharge just once or twice a year. Unlike batteries designed to power electric cars, laptops or other consumer devices,
    they don't need to last hundreds or thousands of cycles.

    "You can start to envision something like a large battery on a 40-foot
    tractor- trailer parked at a wind farm," said coauthor Vince Sprenkle,
    senior strategic advisor at PNNL. "The battery is charged in the spring
    and then the truck is driven down the road to a substation where the
    battery is available if needed during the summer heat." Battelle,
    which operates PNNL, has filed for a patent on the technology.


    ========================================================================== Story Source: Materials provided by
    DOE/Pacific_Northwest_National_Laboratory. Original written by Tom
    Rickey. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Minyuan M. Li, Xiaowen Zhan, Evgueni Polikarpov, Nathan L. Canfield,
    Mark
    H. Engelhard, J. Mark Weller, David M. Reed, Vincent L. Sprenkle,
    Guosheng Li. A freeze-thaw molten salt battery for seasonal
    storage. Cell Reports Physical Science, 2022; 100821 DOI:
    10.1016/j.xcrp.2022.100821 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220405084551.htm

    --- up 5 weeks, 1 day, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)