• Shapeshifting volcano virus points to ne

    From ScienceDaily@1:317/3 to All on Fri Apr 1 22:30:38 2022
    Shapeshifting volcano virus points to new ways to deliver drugs,
    vaccines

    Date:
    April 1, 2022
    Source:
    University of Virginia Health System
    Summary:
    A discovery about a shapeshifting virus found in hot volcanic
    springs could have very useful implications.



    FULL STORY ==========================================================================
    From hot volcanic springs where the water is nearly boiling acid,
    scientists have discovered how lemon-shaped viruses got their form. And
    that discovery could lead to new and better ways to deliver drugs and
    vaccines.


    ========================================================================== While the vast majority of viruses are either rod-like or spherical
    (such as the coronavirus responsible for COVID-19), scientists have been puzzled by the unusual forms of viruses found in some of the harshest environments on Earth.

    The researchers were studying one such virus when they discovered it
    has strange properties that let it alter its shape. While it normally
    resembles a lemon or spindle, the virus can grow tails. The structure
    that lets it do that, the scientists realized, likely explains how ancient rod-like viruses gave rise to all the spindle-shaped viruses seen today.

    "We can now understand a new principle in how proteins can form the
    shell that packages the DNA in a virus," said lead researcher Edward
    H. Egelman, PhD, of the University of Virginia School of Medicine. "This
    has implications for not only understanding how certain viruses evolved
    but potentially can be used for new ways to deliver everything from
    drugs to vaccines." One Tough Virus The virus Egelman and his colleagues
    were studying, Sulfolobus monocaudavirus 1 (SMV1), has a protein shell surrounding the DNA that is spindle- or lemon- shaped. But it has been
    a puzzle for almost 20 years exactly how that many copies of the same
    protein can come together to form such a shape.



    ========================================================================== Egelman and his team were able to reveal the strange properties
    of SMV1 using high-tech cryo-electron microscopy and advanced image
    processing. (Egelman was elected to the National Academy of Sciences for
    his pioneering work using cryo- electron microscopy and 3D modeling to
    map out the world that is far too small for even the most powerful light microscopes to see.) SMV1, the researchers found, contains strands of
    proteins that that slip and slide past each other, due to the fact that
    they are "greasy." These seven strands of proteins were found in both
    the body and tail of the virus, and they give the virus a remarkable
    ability to shapeshift. Rather than having a fixed shape, it can balloon
    up like a pufferfish to accommodate genetic material. At the same time,
    these strands form an impenetrable barrier to prevent the acid which
    surrounds them from destroying the DNA inside the virus.

    The virus is a formidable threat to the single-celled organisms it
    infects.

    Once infected, the host organisms turn into giant factories churning
    out more virus. These host cells grow up to 20 times larger before a
    new army of viruses bursts forth.

    Based on their findings, Egelman and his collaborators conclude that
    today's viruses shaped like spindles or lemons likely evolved from ancient rod-shaped ancestors. The rod-shaped viruses could only contain a limited amount of DNA, and the "greasy" properties that let SMV1 shapeshift
    would have let the ancestral viruses package more genetic material --
    a useful trait for viruses, from an evolutionary perspective.

    "Viruses can pose great threats to human health, as we see from the
    COVID-19 pandemic," said Egelman, of UVA's Department of Biochemistry
    and Molecular Genetics. "It is thus crucial that we understand more about
    how viruses have evolved. But we can also learn from viruses, and create
    new technologies based upon the principles found in these very simple structures." Findings Published The researchers have published their
    findings in the scientific journal Cell; the journal is featuring the
    discovery as the cover story. The research team, mainly a collaboration
    between scientists at UVA and the Institut Pasteur in Paris, consisted
    of Fengbin Wang, Virginija Cvirkaite-Krupovic, Matthijn Vos, Leticia
    C. Beltran, Mark A.B. Kreutzberger, Jean-Marie Winter, Zhangli Su,
    Jun Liu, Stefan Schouten, Mart Krupovic and Egelman.

    The work was funded by the National Institutes of Health, grants
    GM122510 and K99GM138756; l'Agence Nationale de la Recherche, grants ANR-17-CE15-401 0005- 01, ANR-20-CE20-009-02 and ANR-21-CE11-0001-01;
    and Ville de Paris' Emergence (s) project MEMREMA.


    ========================================================================== Story Source: Materials provided by
    University_of_Virginia_Health_System. Note: Content may be edited for
    style and length.


    ========================================================================== Journal Reference:
    1. Fengbin Wang, Virginija Cvirkaite-Krupovic, Matthijn Vos, Leticia C.

    Beltran, Mark A.B. Kreutzberger, Jean-Marie Winter,
    Zhangli Su, Jun Liu, Stefan Schouten, Mart Krupovic, Edward
    H. Egelman. Spindle-shaped archaeal viruses evolved from
    rod-shaped ancestors to package a larger genome. Cell, 2022; DOI:
    10.1016/j.cell.2022.02.019 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220401094903.htm

    --- up 4 weeks, 4 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)