• Scientists determine structure of a DNA

    From ScienceDaily@1:317/3 to All on Mon Mar 21 22:30:44 2022
    Scientists determine structure of a DNA damage 'first responder'

    Date:
    March 21, 2022
    Source:
    Memorial Sloan Kettering Cancer Center
    Summary:
    The results of this collaborative project overturn some conventional
    wisdom about how the DNA repair process works.



    FULL STORY ==========================================================================
    DNA is often likened to a blueprint. The particular sequence of As, Cs,
    Gs, and Ts in DNA provides information for building an organism.


    ========================================================================== What's not captured by this analogy is the fact that our DNA requires
    constant upkeep to maintain its integrity. Were it not for dedicated DNA
    repair machinery that routinely fixes mistakes, the information within
    DNA would be rapidly degraded.

    This repair happens at cell cycle checkpoints that are activated in
    response to DNA damage. Like a quality assurance agent on an assembly
    line, proteins that participate in the DNA damage checkpoint assess
    the cell's DNA for mistakes and, if necessary, pause cell division and
    make repairs. When this checkpoint breaks down -- which can happen as a
    result of genetic mutations -- DNA damage builds up, and the result is
    often cancer.

    Though scientists have learned much about DNA damage and repair over the
    past 50 years, important outstanding questions remain. One particularly bedeviling puzzle is how a repair protein called the 9-1-1 clamp -- a
    DNA damage "first responder" -- attaches itself to the site of a broken
    DNA strand to activate of the DNA damage checkpoint.

    "We know that this attachment is a pivotal step necessary for initiating
    an effective repair program," says Dirk Remus, a molecular biologist
    at the Sloan Kettering Institute (SKI) who studies the fundamentals of
    DNA replication and repair. "But the mechanisms involved are completely obscure." Now, thanks to a collaboration between Dr. Remus' lab and
    that of SKI structural biologist Richard Hite, a clear picture of how the
    9-1-1 clamp is recruited to sites of DNA damage has emerged. The results,
    which challenge conventional wisdom in the field, were published March
    21, 2022, in the journal Nature Structural and Molecular Biology.



    ========================================================================== Complementary Expertise Yields Surprising Results The startling
    discoveries grew out of a collaboration between two labs with
    complementary expertise. Dr. Remus' lab uses biochemical methods to
    study the process of DNA replication and repair. A primary goal of
    his research over the past several years has been to reconstitute the
    entire DNA replication-and- repair process in a test tube, apart from
    a surrounding cell.

    As a result of this effort, his lab has purified several components
    of the repair machinery, including 9-1-1 proteins and proteins that
    facilitate the binding of 9-1-1 to DNA.

    Dr. Remus realized that if these complexes could be viewed at atomic resolution, they would provide a set of freeze-frame images of the
    individual steps in the repair process. That's when he turned to
    Dr. Hite's lab for help.

    "I said, 'We have this complex; can you help us determine its molecular structure to figure out how it works?' And that's what he did." Dr. Hite
    is a structural biologist with expertise in using a technique called cryo-electron microscopy (cryo-EM), which enables the study of proteins
    and protein assemblies by visualizing their fine-grain movements at
    resolutions that can reveal the positions of individual amino acids
    within the proteins.

    Much like the gears and levers of a machine, it's these movements of
    amino acids that allow proteins to serve as the workhorses of the cell, including those that repair DNA.



    ========================================================================== "When Dirk came to us, we realized that many of the tools that our lab
    has developed over the past few years were perfectly suited to answering
    this question," Dr. Hite says. "Using cryo-EM, we're able to not only
    determine one structure but an ensemble of structures. By putting these structures together in a logical pattern, based on the new data and
    previous biochemical data, we can come up with a proposal for how this
    clamp works." They did, and the results were surprising.

    "The model we developed had interesting features that contradicted what
    had been previously thought to be the way these types of clamps are
    being loaded onto DNA," Dr. Hite says.

    "When Rich first produced the structure, I thought he got it wrong because
    it was against all the expectations," Dr. Remus adds. "Now, in hindsight,
    it all makes perfect sense." A New Model for Opening and Closing a DNA
    Clamp Around DNA The 9-1-1 clamp is shaped like a ring. To carry out its function, it needs to surround the broken DNA at the junction between an exposed end of one strand of a double-stranded piece of DNA abutting a single-stranded one. Consequently, the ring structure of the 9-1-1 clamp
    must open to allow the single-stranded DNA to swing into the center of the clamp and then reclose around it. This does not occur spontaneously but is facilitated by another protein complex, called the clamp loader complex.

    "It had been thought from all studies prior to this that clamps would
    open in the manner of lock washer, where basically the two open ends of
    the clamp would rotate out of plane to create a narrow gap," Dr. Remus
    says. "But what Rich observed is that the 9-1-1 clamp opens much more
    widely than anticipated, and it opens completely in plane -- there's no twisting like in the lock-washer scenario." The scientists point out
    that the lock-washer model has been around for two decades and has been
    the guiding paradigm in the field for how a clamp gets loaded around
    DNA. But in this case, it's wrong.

    Another surprise was that the 9-1-1 clamp loader complex was observed to
    bind DNA in the opposite orientation from other clamp loader complexes
    that act on undamaged DNA during normal DNA replication. This observation explained how 9- 1-1 is specifically recruited to sites of DNA damage.

    From Basic to Translational Research Aside from providing a satisfying
    answer to a fundamental biological puzzle, Dr. Remus thinks the research
    may eventually lead to better cancer drugs.

    Many existing chemotherapy drugs work by interfering with DNA replication
    of cancer cells and generating the type of DNA damage that is normally
    fixed by repair processes elicited by the 9-1-1 clamp. Because cancer
    cells already have a reduced ability to repair DNA damage, the addition
    of DNA-damaging chemotherapy drugs can overwhelm the cells' ability to
    fix their DNA, and so they die. (This is how drugs called PARP inhibitors
    work, for example.) With this new knowledge about how 9-1-1 interacts
    with other repair proteins and with DNA, scientists could potentially
    design drugs that interfere specifically with this step of the repair
    process, making chemotherapy drugs even more effective.

    "One of the great things about working here at SKI is that a basic
    scientist's research can be the starting point for translational studies
    that ultimately lead to better treatments," Dr. Hite says.

    This research was funded in part by the National Institutes of Health
    (NIH-NCI Cancer Center Support Grant P30 CA008748, NIGMS R01-GM107239,
    NIGMS R01- GM127428), the Deutsche Forschungsgemeinschaft, and the Josie Robertson Investigators Program. The study authors declare that they
    have no competing interests.


    ========================================================================== Story Source: Materials provided by
    Memorial_Sloan_Kettering_Cancer_Center. Note: Content may be edited for
    style and length.


    ========================================================================== Journal Reference:
    1. Juan C. Castaneda, Marina Schrecker, Dirk Remus, Richard K. Hite.

    Mechanisms of loading and release of the 9-1-1 checkpoint
    clamp. Nature Structural & Molecular Biology, 2022; DOI:
    10.1038/s41594-022-00741-7 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220321132210.htm

    --- up 3 weeks, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)