• Researchers map human sensory neurons, p

    From ScienceDaily@1:317/3 to All on Fri Mar 18 22:30:36 2022
    Researchers map human sensory neurons, pursue chronic pain cure

    Date:
    March 18, 2022
    Source:
    University of Texas at Dallas
    Summary:
    An investigation into how human sensory neurons differ from animal
    neurons has provided researchers with important clues in the
    pursuit of more effective treatments for chronic pain. Researchers
    are analyzing the origins of how pain is generated by nociceptors
    in human dorsal root ganglia (DRG) neurons, charting the full
    transcriptome of messenger RNA strands produced in these cells.



    FULL STORY ==========================================================================
    An investigation into how human nerve cells differ from animal cells has provided researchers from The University of Texas at Dallas' Center for Advanced Pain Studies (CAPS) with important clues in the pursuit of more effective treatments for chronic pain.


    ==========================================================================
    Dr. Ted Price BS'97, Ashbel Smith Professor of neuroscience in the School
    of Behavioral and Brain Sciences (BBS) and CAPS director, leads a team
    that is analyzing the origins of how pain is generated by nociceptors
    -- pain-sensing nerve cells -- in human dorsal root ganglia (DRG)
    neurons. Price is co- corresponding author of a study, featured on the
    cover of the Feb. 16 issue of Science Translational Medicine,that charts
    the full range of messenger RNA (mRNA) strands -- a grouping called the transcriptome -- produced in these cells.

    Because mRNA is a single-stranded copy of a gene that can be translated
    into protein, the findings provide neuroscientists with a much better understanding of which genes are expressed in DRG neurons. The study
    also reinforces the value of studying human tissue -- as opposed to
    animal cells -- in the search for pain treatments.

    DRG neurons are specialized nerve cells clustered near the base of
    the spine.

    Very little work has been done previously with these cells from humans
    due to the scarcity of their availability for research.

    "We're one of the few groups in the country with access to human donor DRG tissue acquired specifically for research," said Stephanie Shiers PhD'19, neuroscience research scientist and a joint first author of the paper.

    Shiers' prior research made the case in broad terms that significant differences exist between the nociceptors in mice and humans. That
    work explained why proposed pain treatments that succeed in mice fail
    in humans.



    ========================================================================== "This paper is the next step, clearly demonstrating the profound scale of
    those differences," Price said. "An entire set of nociceptors that many
    people study in mice just aren't found in humans. There are subtypes in
    humans that don't exist even in nonhuman primates.

    "It's not that we should abandon all existing nonhuman models of pain. But
    some are really good, while others aren't, depending on what you want
    to study. When it comes to this aspect of pain, our work shows which
    is which." To profile all the gene activity in a DRG tissue sample, the research team used an advanced technique called spatial transcriptomics,
    which has enhanced capabilities compared with single-cell RNA sequencing.

    "It's rare to have access to both the human tissue we used and to
    the technology," said Dr. Diana Tavares-Ferreira, also a co-first
    and co- corresponding author of the study and a CAPS fellow. "Spatial transcriptomics allows us to overcome the large size of these neurons
    and to see with a degree of certainty where and how a gene is expressed
    in human nociceptors.

    "Our main goal was to fully characterize the whole transcriptome of human
    DRG neurons because so much of the work that's been done to find new pain therapeutic targets has been in mice. Our results help clarify why those efforts struggle to produce results." By describing the neuron types
    present in human DRG and detailing their gene expression, the team has
    a much better picture of what the physiological functions are for each
    gene, Price said.

    "With that knowledge, not only can anybody use our data to seek drug
    targets that they couldn't have sought before, but in some cases we also
    don't need to use the mice at all now. We can use the human information,"
    he said.

    Price called removing that reliance on animal models "a fundamental
    change," because it allows scientists to explore how any cell type might interact with any neuron in the human peripheral nervous system.

    "We're now able to approach developing pain therapeutics in a more
    specific way and to think about how chronic pain happens in people in a different way," Price said. "My hope is that our findings can change the
    way people do research in our field. It's a road map that we will use,
    and others are welcome to follow."

    ========================================================================== Story Source: Materials provided
    by University_of_Texas_at_Dallas. Original written by Stephen
    Fontenot. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Diana Tavares-Ferreira, Stephanie Shiers, Pradipta R. Ray,
    Andi Wangzhou,
    Vivekanand Jeevakumar, Ishwarya Sankaranarayanan, Anna M. Cervantes,
    Jeffrey C. Reese, Alexander Chamessian, Bryan A. Copits, Patrick M.

    Dougherty, Robert W. Gereau, Michael D. Burton, Gregory
    Dussor, Theodore J. Price. Spatial transcriptomics of
    dorsal root ganglia identifies molecular signatures of human
    nociceptors. Science Translational Medicine, 2022; 14 (632) DOI:
    10.1126/scitranslmed.abj8186 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220318170516.htm

    --- up 2 weeks, 4 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)