• Novel X-ray lens facilitates glimpse int

    From ScienceDaily@1:317/3 to All on Mon Mar 14 22:30:38 2022
    Novel X-ray lens facilitates glimpse into the nanoworld

    Date:
    March 14, 2022
    Source:
    Paul Scherrer Institute
    Summary:
    Scientists have developed a ground-breaking achromatic lens
    for X-rays.

    This allows the X-ray beams to be accurately focused on a single
    point even if they have different wavelengths. The new lens will
    make it much easier to study nanostructures using X-rays, according
    to a new article.



    FULL STORY ==========================================================================
    PSI scientists have developed a ground-breaking achromatic lens for
    X-rays.

    This allows the X-ray beams to be accurately focused on a single point
    even if they have different wavelengths. The new lens will make it
    much easier to study nanostructures using X-rays, according to a paper
    just published by the researchers in the scientific journal Nature Communications.


    ========================================================================== Achromatic lenses are essential for producing sharp images in
    photography and optical microscopes. They ensure that different colours
    -- i.e. light of different wavelengths -- have a common focal point. To
    date, however, achromatic lenses have not been available for X-rays,
    so that high-resolution X-ray microscopy has only been possible with monochromatic X-rays. In practice, this means that all other wavelengths
    have to be filtered out of the X-ray beam spectrum and hence only a small portion of the light can effectively be used, resulting in a relatively inefficient image capturing process.

    A team of PSI scientists have now solved this problem by successfully developing an achromatic X-ray lens for X-rays. Since X-rays can reveal
    much smaller structures than visible light, the innovative lens will particularly benefit R&D work in sectors such as microchips, batteries
    and materials science, among others.

    More complex than in the visible range The fact that it took until now
    to develop an achromatic lens for X-rays may at first seem surprising:
    for visible light, achromatic lenses have been around for over 200
    years. These are usually composed of two different materials. The light penetrates the first material and splits into its spectral colours -
    - much like when passing through a conventional glass prism. It then
    passes through a second material to reverse this effect. In physics,
    the process of separating different wavelengths is called "dispersion."
    "This basic principle applied in the visible range does not work in the
    X-ray range, however," explains the physicist Christian David, Head of
    the X-Ray Optics and Applications research group at PSI's Laboratory for
    X-ray Nanoscience and Technologies. "For X-rays, no pair of materials
    exists for which the optical properties differ sufficiently over a broad
    range of wavelengths for one material to counterbalance the effect of
    the other. In other words: the dispersion of materials in the X-ray
    range is too similar." Two principles rather than two materials


    ==========================================================================
    So instead of looking for the answer in the combination of two materials,
    the scientists linked together two different optical principles. "The
    trick was to realise that we could position a second refractive lens in
    front of our diffractive lens," says Adam Kubec, lead author of the new
    study. Until recently, Kubec was a researcher in Christian David's group,
    and now works for XRnanotech, a spin-off that emerged from PSI's research
    in X-ray optics.

    "For many years now, PSI has been a world leader in the production
    of X-ray lenses," says David. "We supply specialised lenses, known as
    Fresnel zone plates, for X-ray microscopy at synchrotron light sources worldwide." David's research group uses established nanolithography
    methods to produce diffractive lenses. However, for the second element
    in the achromatic lens -- the refractive structure -, a new method was
    needed which has only recently become available: 3D printing on the
    micrometre scale. This ultimately enabled Kubec to produce a shape that
    vaguely resembles a miniature rocket.

    Potential commercial applications The newly developed lens enables
    the leap from research application to X-ray microscopy in commercial
    use, for example in industry. "Synchrotron sources generate X-rays of
    such high intensity that it is possible to filter out all but a single wavelength while still preserving enough light to produce an image," Kubec explains. However, synchrotrons are large-scale research facilities. To
    date, R&D staff working in industry are allocated a set beam time to
    conduct experiments at synchrotrons at research institutes, including
    the Swiss Light Source SLS at PSI. This beam time is extremely limited, expensive and requires long-term planning. "Industry would like to have
    much faster response loops in their R&D processes," Kubec says. "Our
    achromatic X- ray lens will help enormously with this: It will enable
    compact X-ray microscopes that industrial companies can operate on their
    own premises." Together with XRnanotech, PSI plans to market the new
    lens. Kubec says they already have suitable contacts with companies specialising in building X-ray microscopy facilities on the lab scale.



    ==========================================================================
    SLS X-ray beam used for testing To characterise their achromatic X-ray
    lens, scientists used an X-ray beamline at SLS. One of the methods
    employed there is a highly developed X-ray microscopy technique called ptychography. "This technique is normally used to examine an unknown
    sample," says the study's second author, Marie-Christine Zdora, a
    physicist working in Christian David's research group and an expert in
    X-ray imaging. "We on the other hand used ptychography to characterise the
    X- ray beam and thus our achromatic lens." This enabled the scientists
    to precisely detect the location of the X-ray focal point at different wavelengths.

    They additionally tested the new lens using a method where the sample is
    moved through the focus of the X-ray beam in small raster steps. When
    the wavelength of the X-ray beam is changed, the images produced with
    a conventional X-ray lens become very blurred. This, however, does not
    happen when using the new achromatic lens. "When we eventually got a
    sharp image of the test sample over a broad range of wavelengths, we
    knew our lens was working," says a delighted Zdora.

    David adds: "The fact that we were able to develop this achromatic X-ray
    lens at PSI and will soon be bringing it to market with XRnanotech shows
    that the type of research we do here can lead to practical applications
    in a very short period of time."

    ========================================================================== Story Source: Materials provided by Paul_Scherrer_Institute. Original
    written by Laura Hennemann. Note: Content may be edited for style
    and length.


    ========================================================================== Journal Reference:
    1. Adam Kubec, Marie-Christine Zdora, Umut T. Sanli, Ana Diaz,
    Joan Vila-
    Comamala, Christian David. An achromatic X-ray lens. Nature
    Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-28902-8 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220314095706.htm

    --- up 2 weeks, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)