• Treating tough tumors by exploiting thei

    From ScienceDaily@1:317/3 to All on Wed Mar 9 21:30:50 2022
    Treating tough tumors by exploiting their iron 'addiction'

    Date:
    March 9, 2022
    Source:
    University of California - San Francisco
    Summary:
    Researchers have successfully leveraged an FDA-approved drug to
    halt growth of tumors driven by mutations in the RAS gene, which
    are famously difficult to treat and account for about one in four
    cancer deaths.



    FULL STORY ========================================================================== Researchers at the University of California, San Francisco, have
    successfully leveraged an FDA-approved drug to halt growth of tumors
    driven by mutations in the RAS gene, which are famously difficult to
    treat and account for about one in four cancer deaths.


    ========================================================================== Taking advantage of what they discovered to be the cancer cells' appetite
    for a reactive form of iron, the researchers tweaked an anticancer drug
    to operate only in these iron-rich cells, leaving other cells to function normally. The achievement, described in the March 9, 2022 issue of the
    Journal of Experimental Medicine could open doors to more tolerable chemotherapy for many cancers in which current treatments can be as
    challenging as the disease.

    "RAS mutations, by themselves, cause more misery than all other cancers combined, and take so many lives worldwide," said Eric Collisson,
    MD, a senior author of the study and member of the UCSF Helen Diller
    Family Comprehensive Cancer Center. "This study brings us much closer
    to addressing the unmet need for better treatment of these cancers."
    A Cancer Drug with an Iron Sensor To do so, Collisson and lead author
    Honglin Jiang, MD, both oncologists at UCSF, teamed up with Adam Renslo,
    PhD, a pharmaceutical chemist also at UCSF and co-senior author, to
    focus on RAS-mutated pancreatic and gastrointestinal cancers. The RAS
    gene plays a role in tamping down pathways in the cell that drive it to
    grow and divide. Mutations in the gene usually mean that these growth
    forces are going unchecked, leading to cancer.

    Current treatments, such as a drug called cobimetinib, do a good job of blocking this excessive growth activity set in motion by the mutation,
    but they do so in many other, non-cancerous tissues as well, leading to
    serious side effects that many patients find intolerable.



    ========================================================================== "Cobimetinib is a classic example of an anticancer drug that we know works
    well on its target, but it hasn't achieved its clinical potential because
    the same target is important in the skin and other normal tissues,"
    said Renslo.

    The researchers found that many tumors driven by the KRAS form of RAS
    mutations have elevated concentrations of ferrous iron -- a form of
    the element that is highly reactive -- and that this is correlated with
    shorter survival times.

    To take advantage of this unique characteristic of the cancer cells,
    Renslo and then-graduate student Ryan Muir synthesized a new version
    of cobimetinib bearing a small, molecular sensor of ferrous iron. The
    sensor effectively turns cobimetinib off until it encounters ferrous
    iron in the cancer cells.

    After confirming that the new drug, dubbed TRX-cobimetinib, prevented
    adverse effects on normal tissues like skin that limit dosing in human patients, the researchers tested the compound in mouse models of several KRAS-driven cancers and found that it was just as effective as cobimetinib
    in shrinking tumors.

    Enabling New Drug Combinations The reduced toxicity allowed the
    researchers to combine TRX-cobimetinib with other synergistic anticancer
    drugs to provide combination treatments that proved even better at
    inhibiting tumor growth and were better tolerated than comparable
    combinations using cobimetinib.



    ==========================================================================
    "By removing toxicity from the equation, you're talking not just about
    one new drug, but 10 new combinations that you can now think about
    exploring in the clinic," said Renslo. "That would be the home run for
    this approach." Renslo is already at work studying whether a similar
    approach can be applied to antibiotics, some of which have untoward side effects, to target treatment and reduce toxicity.

    Collisson, who works every day with patients wrestling with these cancers,
    said the collaboration with Renslo has given him hope that he'll be able
    to give those patients better options in the not-too-distant future. And,
    he added, the experience has opened his eyes to things he'd been missing
    by being so focused on his day-to-day oncology world.

    "I love taking care of patients, and a fundamental part of that is,
    ultimately, getting a molecule to the place where it's needed and keeping
    it out of places where it's not needed," he said. "To be able to deliver
    a therapy that's five times more potent than what we currently have and
    not run the patient ragged, that's pretty exciting." Funding: This work
    was supported by NIH, NCI Grants CA178015, CA222862, CA227807, CA239604, CA230263, CA210974, CA224081, P30CA082103, AI105106, W81XWH1810763,
    and W81XWH1810754.


    ========================================================================== Story Source: Materials provided by
    University_of_California_-_San_Francisco. Original written by Robin
    Marks. Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Honglin Jiang, Ryan K. Muir, Ryan L. Gonciarz, Adam B. Olshen,
    Iwei Yeh,
    Byron C. Hann, Ning Zhao, Yung-hua Wang, Spencer C. Behr, James E.

    Korkola, Michael J. Evans, Eric A. Collisson, Adam
    R. Renslo. Ferrous iron-activatable drug conjugate achieves potent
    MAPK blockade in KRAS- driven tumors. Journal of Experimental
    Medicine, 2022; 219 (4) DOI: 10.1084/jem.20210739 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220309104357.htm

    --- up 1 week, 2 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)