• Researchers map magnetic fields in 3D, f

    From ScienceDaily@1:317/3 to All on Fri Mar 4 21:30:34 2022
    Researchers map magnetic fields in 3D, findings could improve device
    storage capacity

    Date:
    March 4, 2022
    Source:
    University of New Hampshire
    Summary:
    Researchers have mapped magnetic fields in three dimensions,
    a major step toward solving what they call the 'grand challenge'
    of revealing 3D magnetic configuration in magnetic materials. The
    work has implications for improving diagnostic imaging and capacity
    in storage devices.



    FULL STORY ========================================================================== Researchers from the University of New Hampshire have mapped magnetic
    fields in three dimensions, a major step toward solving what they call
    the "grand challenge" of revealing 3D magnetic configuration in magnetic materials. The work has implications for improving diagnostic imaging
    and capacity in storage devices.


    ==========================================================================
    "The number three really represents a breakthrough in this field,"
    said Jiadong Zang, associate professor of physics. "Our brain is a three-dimensional object.

    It's ironic that all our devices are two-dimensional. They're
    underperforming compared to our brains." The study, published recently
    in the journal Nature Materials, provides the results of three years
    of high-performance numerical simulations, mapping a three-dimensional structure of a 100 nanometer magnetic tetrahedron sample using only three projection angles of electron beams. Zang points to computed tomography
    medical imaging, or CT scans, as an example. Instead of sending multiple
    beams of X-rays to map tissues in the body the same images could be
    produced with only three beams.

    Reducing electron beam exposure in fast three-dimensional magnetic
    imaging is one potential application for this collaborative research. The researchers' findings also have implications for improving storage
    capacity of magnetic memory devices, which currently deposit circuits
    onto two-dimensional panels that are approaching maximum density.

    The method offered by this research will be a useful tool to detect and characterize three-dimensional magnetic circuits.

    Zang and Alexander Booth, a former UNH doctoral student, conducted
    the theoretical analysis. Researchers from Japan and the University
    of Wisconsin performed the physical experiments. Funds from the
    U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences
    (BES) under award number DE- SC0020221 helped support Zang and Booth's contributions to this research.

    The University of New Hampshire inspires innovation and transforms
    lives in our state, nation and world. More than 16,000 students from
    all 50 states and 71 countries engage with an award-winning faculty
    in top-ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of
    study. A Carnegie Classification R1 institution, UNH partners with NASA,
    NOAA, NSF and NIH, and received $260 million in competitive external
    funding in FY21 to further explore and define the frontiers of land,
    sea and space.

    ========================================================================== Story Source: Materials provided by University_of_New_Hampshire. Original written by Beth Potier. Note: Content may be edited for style and length.


    ========================================================================== Related Multimedia:
    * Graphical_representations_of_the_distribution_of_magnetic_field ========================================================================== Journal Reference:
    1. Kodai Niitsu, Yizhou Liu, Alexander C. Booth, Xiuzhen Yu, Nitish
    Mathur,
    Matthew J. Stolt, Daisuke Shindo, Song Jin, Jiadong Zang, Naoto
    Nagaosa, Yoshinori Tokura. Geometrically stabilized skyrmionic
    vortex in FeGe tetrahedral nanoparticles. Nature Materials, 2022;
    21 (3): 305 DOI: 10.1038/s41563-021-01186-x ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220304124015.htm

    --- up 4 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)