• `Dancing molecules' successfully repair

    From ScienceDaily@1:317/3 to All on Thu Nov 11 21:30:32 2021
    `Dancing molecules' successfully repair severe spinal cord injuries
    After single injection, paralyzed animals regained ability to walk within
    four weeks

    Date:
    November 11, 2021
    Source:
    Northwestern University
    Summary:
    Researchers have developed an injectable therapy based on nanofibers
    that has enabled paralyzed mice with severe spinal cord injuries
    to regain the ability to walk.



    FULL STORY ========================================================================== Northwestern University researchers have developed a new injectable
    therapy that harnesses "dancing molecules" to reverse paralysis and
    repair tissue after severe spinal cord injuries.


    ==========================================================================
    In a new study, researchers administered a single injection to tissues surrounding the spinal cords of paralyzed mice. Just four weeks later,
    the animals regained the ability to walk.

    The research will be published in the Nov. 12 issue of the journal
    Science.

    By sending bioactive signals to trigger cells to repair and regenerate,
    the breakthrough therapy dramatically improved severely injured spinal
    cords in five key ways: (1) The severed extensions of neurons, called
    axons, regenerated; (2) scar tissue, which can create a physical barrier
    to regeneration and repair, significantly diminished; (3) myelin, the insulating layer of axons that is important in transmitting electrical
    signals efficiently, reformed around cells; (4) functional blood vessels
    formed to deliver nutrients to cells at the injury site; and (5) more
    motor neurons survived.

    After the therapy performs its function, the materials biodegrade into nutrients for the cells within 12 weeks and then completely disappear
    from the body without noticeable side effects. This is the first study in
    which researchers controlled the collective motion of molecules through
    changes in chemical structure to increase a therapeutic's efficacy.

    "Our research aims to find a therapy that can prevent individuals from
    becoming paralyzed after major trauma or disease," said Northwestern's
    Samuel I. Stupp, who led the study. "For decades, this has remained
    a major challenge for scientists because our body's central nervous
    system, which includes the brain and spinal cord, does not have any
    significant capacity to repair itself after injury or after the onset
    of a degenerative disease. We are going straight to the FDA to start the process of getting this new therapy approved for use in human patients,
    who currently have very few treatment options." Stupp is Board of
    Trustees Professor of Materials Science and Engineering, Chemistry,
    Medicine and Biomedical Engineering at Northwestern, where he is founding director of the Simpson Querrey Institute for BioNanotechnology (SQI) and
    its affiliated research center, the Center for Regenerative Nanomedicine.

    He has appointments in the McCormick School of Engineering, Weinberg
    College of Arts and Sciences and Feinberg School of Medicine.



    ==========================================================================
    Life expectancy has not improved since the 1980s According to the National Spinal Cord Injury Statistical Center, nearly 300,000 people are currently living with a spinal cord injury in the United States.

    Life for these patients can be extraordinarily difficult. Less than 3%
    of people with complete injury ever recover basic physical functions. And approximately 30% are re-hospitalized at least once during any given
    year after the initial injury, costing millions of dollars in average
    lifetime health care costs per patient. Life expectancy for people with
    spinal cord injuries is significantly lower than people without spinal
    cord injuries and has not improved since the 1980s.

    "Currently, there are no therapeutics that trigger spinal cord
    regeneration," said Stupp, an expert in regenerative medicine. "I wanted
    to make a difference on the outcomes of spinal cord injury and to tackle
    this problem, given the tremendous impact it could have on the lives
    of patients. Also, new science to address spinal cord injury could
    have impact on strategies for neurodegenerative diseases and stroke."
    'Dancing molecules' hit moving targets The secret behind Stupp's new breakthrough therapeutic is tuning the motion of molecules, so they can
    find and properly engage constantly moving cellular receptors. Injected
    as a liquid, the therapy immediately gels into a complex network of
    nanofibers that mimic the extracellular matrix of the spinal cord.

    By matching the matrix's structure, mimicking the motion of biological molecules and incorporating signals for receptors, the synthetic materials
    are able to communicate with cells.



    ========================================================================== "Receptors in neurons and other cells constantly move around," Stupp
    said. "The key innovation in our research, which has never been done
    before, is to control the collective motion of more than 100,000 molecules within our nanofibers. By making the molecules move, 'dance' or even leap temporarily out of these structures, known as supramolecular polymers,
    they are able to connect more effectively with receptors." Stupp and his
    team found that fine-tuning the molecules' motion within the nanofiber
    network to make them more agile resulted in greater therapeutic efficacy
    in paralyzed mice. They also confirmed that formulations of their therapy
    with enhanced molecular motion performed better during in vitro tests
    with human cells, indicating increased bioactivity and cellular signaling.

    "Given that cells themselves and their receptors are in constant motion,
    you can imagine that molecules moving more rapidly would encounter
    these receptors more often," Stupp said. "If the molecules are sluggish
    and not as 'social,' they may never come into contact with the cells."
    One injection, two signals Once connected to the receptors, the moving molecules trigger two cascading signals, both of which are critical to
    spinal cord repair. One signal prompts the long tails of neurons in the
    spinal cord, called axons, to regenerate.

    Similar to electrical cables, axons send signals between the brain and
    the rest of the body. Severing or damaging axons can result in the loss
    of feeling in the body or even paralysis. Repairing axons, on the other
    hand, increases communication between the body and brain.

    The second signal helps neurons survive after injury because it causes
    other cell types to proliferate, promoting the regrowth of lost blood
    vessels that feed neurons and critical cells for tissue repair. The
    therapy also induces myelin to rebuild around axons and reduces glial
    scarring, which acts as a physical barrier that prevents the spinal cord
    from healing.

    "The signals used in the study mimic the natural proteins that are
    needed to induce the desired biological responses. However, proteins
    have extremely short half-lives and are expensive to produce," said
    Zaida A'lvarez, the study's first author and former research assistant professor in Stupp's laboratory.

    "Our synthetic signals are short, modified peptides that -- when
    bonded together by the thousands -- will survive for weeks to deliver bioactivity. The end result is a therapy that is less expensive to produce
    and lasts much longer." Universal application While the new therapy could
    be used to prevent paralysis after major trauma (automobile accidents,
    falls, sports accidents and gunshot wounds) as well as from diseases,
    Stupp believes the underlying discovery -- that "supramolecular motion"
    is a key factor in bioactivity -- can be applied to other therapies
    and targets.

    "The central nervous system tissues we have successfully regenerated in
    the injured spinal cord are similar to those in the brain affected by
    stroke and neurodegenerative diseases, such as ALS, Parkinson's disease
    and Alzheimer's disease," Stupp said. "Beyond that, our fundamental
    discovery about controlling the motion of molecular assemblies to enhance
    cell signaling could be applied universally across biomedical targets."
    Other Northwestern study authors include Evangelos Kiskinis, assistant professor of neurology and neuroscience in Feinberg; research technician
    Feng Chen; postdoctoral researchers Ivan Sasselli, Alberto Ortega and Zois Syrgiannis; and graduate students Alexandra Kolberg-Edelbrock, Ruomeng
    Qiu and Stacey Chin. Peter Mirau of the Air Force Research Laboratories
    and Steven Weigand of Argonne National Laboratory also are co-authors.

    The study was supported by the Louis A. Simpson and Kimberly K. Querrey
    Center for Regenerative Nanomedicine at the Simpson Querrey Institute
    for BioNanotechnology, the Air Force Research Laboratory (award number FA8650-15-2- 5518), National Institute of Neurological Disorders and
    Stroke and the National Institute on Aging (award numbers R01NS104219, R21NS107761 and R21NS107761- 01A1), the Les Turner ALS Foundation,
    the New York Stem Cell Foundation, the Paralyzed Veterans of America
    Research Foundation (award number PVA17RF0008), the National Science
    Foundation and the French Muscular Dystrophy Association.

    Video of severe spinal cord injuries repaired:
    https://www.youtube.com/ watch?v=Q_xvCE904YU ========================================================================== Story Source: Materials provided by Northwestern_University. Original
    written by Amanda Morris. Note: Content may be edited for style and
    length.


    ========================================================================== Journal Reference:
    1. Z. A'lvarez, A. N. Kolberg-Edelbrock, I. R. Sasselli, J. A. Ortega,
    R.

    Qiu, Z. Syrgiannis, P. A. Mirau, F. Chen, S. M. Chin, S. Weigand, E.

    Kiskinis, S. I. Stupp. Bioactive scaffolds with enhanced
    supramolecular motion promote recovery from spinal cord
    injury. Science, 2021; 374 (6569): 848 DOI: 10.1126/science.abh3602 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2021/11/211111153635.htm

    --- up 2 hours, 54 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)